用户名: 密码: 验证码:
Nanocomposite Polymers with “Slimy” Surfaces that Refresh Following Abrasion
详细信息    查看全文
  • 作者:Wenshou Wang ; Ronald A. Siegel ; Chun Wang
  • 刊名:ACS Biomaterials Science & Engineering
  • 出版年:2016
  • 出版时间:February 8, 2016
  • 年:2016
  • 卷:2
  • 期:2
  • 页码:180-187
  • 全文大小:509K
  • ISSN:2373-9878
文摘
Creating polymeric biomaterials with antifouling surface properties that persist after mechanical abrasion is a significant challenge. We report a simple but effective approach based on nanocomposites consisting of a bulk biocompatible polymer, polycaprolactone (PCL), admixed with a minute fraction (1–3 wt %) of nanoparticles consisting of a hyaluronic acid (HA)-PCL graft copolymer (HA-g-PCL). In a nonaqueous solvent such as chloroform, the HA-PCL graft copolymer adopts a reverse-micelle-like structure with a shell dominated by PCL chains, allowing it to be mixed well with high-molecular-weight PCL in the same solvent and cast into a nanocomposite film. Upon exposure to aqueous buffer, the HA-g-PCL nanoparticles reveal the hydrophilic chains of HA to face the outside, conferring a hydrophilic “slimy” or “artificial mucus” layer to the bulk PCL film that resists protein and cell adhesion, without altering bulk mechanical properties. After mechanical abrasion, the nanoparticles replenish the newly exposed material surface with HA, sustaining the surface’s protein/cell resistance. This approach could apply to a wide range of biodegradable polymers to achieve consistent antifouling capacity in the face of mechanical abrasion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700