用户名: 密码: 验证码:
Modeling the Distribution of Sulfur Compounds in a Large Two Stroke Diesel Engine
详细信息    查看全文
文摘
In many years large low speed marine diesel engines have consumed heavy fuel oils with sulfur contents in the order of 2.5鈥?.5 wt %. Present legislation requires that the fuel sulfur is reduced, and in the near future the limit will be 0.5 wt % globally. During combustion most of the sulfur is oxidized to SO2 from which a fraction is further oxidized to SO3. SO3 may combine with H2O and condense as liquid sulfuric acid that promotes corrosive wear on e.g. cylinder liners. To extend engine lifetime and reduce costs for lubrication it is pivotal to identify formation of SO3 with respect to operational conditions and sulfur feed. This work presents a computational model of a large low speed two-stroke diesel engine where a 0D multizone approach including a detailed reaction mechanism is employed in order to investigate in cylinder formation of gaseous SO3 where fuel burn rates are based on experimental pressure traces. In contrast to NO the SO3 does not really form at the highest combustion temperatures, but like NO the formation of SO3 is very sensitive to the rate that fresh air mixes with hot combustion products. Consequently a simple mixing rate is proposed and calibrated in order to meet experimental results of NO. For a large low speed diesel engine the model shows that 3鈥?% of the injected sulfur is oxidized to SO3 that is formed primarily in the temperature range from 2000 to 1300 K during cylinder expansion. In addition the model is used to reduce the full reaction mechanism from 96 to 7 elementary sulfur reactions without compromising the SO3 to SO2 ratio.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700