用户名: 密码: 验证码:
Diffusional Transport of Ions in Plasticized Anion-Exchange Membranes
详细信息    查看全文
文摘
Diffusional transport properties of hydrophobic anion-exchange membranes were studied using the polymer inclusion membrane (PIM). This class of membranes is extensively used in the chemical sensor and membrane based separation processes. The samples of PIM were prepared by physical containment of the trioctylmethylammonium chloride (Aliquat-336) in the plasticized matrix of cellulose triacetate (CTA). The plasticizers 2-nitrophenyl octyl ether, dioctyl phthalate, and tris(2-ethylhexyl)phosphate having different dielectric constant and viscosity were used to vary local environment of the membrane matrix. The morphological structure of the PIM was obtained by atomic force microscopy and transmission electron microscopy (TEM). For TEM, platinum nanoparticles (Pt nps) were formed in the PIM sample. The formation of Pt nps involved in situ reduction of PtCl62鈥?/sup> ions with BH4鈥?/sup> ions in the membrane matrix. Since both the species are anions, Pt nps thus formed can provide information on spatial distribution of anion-exchanging molecules (Aliquat-336) in the membrane. The glass transitions in the membrane samples were measured to study the effects of plasticizer on physical structure of the membrane. The self-diffusion coefficients (D) of the I鈥?/sup> ions and water in these membranes were obtained by analyzing the experimentally measured exchange rate profiles of 131I鈥?/sup> with natI鈥?/sup> and tritiated water with H2O, respectively, between the membrane and equilibrating solution using an analytical solution of Fick's second law. The values of D(I鈥?/sup>) in membrane samples with a fixed proportion of CTA, plasticizer, and Aliquat-336 were found to vary significantly depending upon the nature of the plasticizer used. The comparison of values of D with properties of the plasticizers indicated that both dielectric constant and viscosity of the plasticizer affect the self-diffusion mobility of I鈥?/sup> ions in the membrane. The value of D(I鈥?/sup>) in the PIM samples did not vary significantly with concentration of Aliquat-336 up to 0.5 mequiv g鈥?, and thereafter D(I鈥?/sup>) increased linearly with Aliquat-336 concentration in the membrane. The self-diffusion coefficients of water D(H2O) in PIM samples were found to be 1 order of magnitude higher than the value of D(I鈥?/sup>) and varied slightly depending upon the plasticizer present in the membrane. It was observed in electrochemical impedance spectroscopic studies of the PIM samples that diffusion mobility of NO3鈥?/sup> ions was 1.66 times higher than that of I鈥?/sup> ions, and diffusion mobility of SO42鈥?/sup> ions was half of that for I鈥?/sup> ions. The theoretical interpretation of experimental counterions exchange rate profiles in terms of the Nernst鈥揚lanck equation for interdiffusion also showed higher diffusion mobility of NO3鈥?/sup> ions in the PIM than Cl鈥?/sup>, I鈥?/sup>, and ClO4鈥?/sup> ions, which have comparable diffusion mobility.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700