用户名: 密码: 验证码:
Pressure-Induced Irreversible Phase Transition in the Energetic Material Urea Nitrate: Combined Raman Scattering and X-ray Diffraction Study
详细信息    查看全文
文摘
In situ high-pressure Raman spectroscopy and synchrotron X-ray diffraction (XRD) have been employed to investigate the behavior of the energetic material urea nitrate ((NH2)2COH+路NO3鈥?/sup>, UN) up to the pressure of 26 GPa. UN exhibits the typical supramolecular structure with the uronium cation and nitrate anion held together by multiple hydrogen bonds in the layer. The irreversible phase transition in the range 9鈥?5 GPa has been corroborated by experimental results and is proposed to stem from rearrangements of hydrogen bonds. Further analysis of XRD patterns indicates the new phase (phase II) has Pc symmetry. The retrieved sample is 10.6% smaller than the ambient phase (phase I) in volume owing to the transformation from two-dimensional (2D) hydrogen-bonded networks to three-dimensional (3D) ones. The mechanism for the phase transition involves the cooperativity of noncovalent interactions under high pressure and distortions of the layered structure. This work suggests high pressure is an efficient technique to explore the performance of energetic materials, and to synthesize new phases with high density.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700