用户名: 密码: 验证码:
The Impact of 纬 Radiation on the Bioavailability of Fe(III) Minerals for Microbial Respiration
详细信息    查看全文
文摘
Conservation of energy by Fe(III)-reducing species such as Shewanella oneidensis could potentially control the redox potential of environments relevant to the geological disposal of radioactive waste and radionuclide contaminated land. Such environments will be exposed to ionizing radiation so characterization of radiation alteration to the mineralogy and the resultant impact upon microbial respiration of iron is essential. Radiation induced changes to the iron mineralogy may impact upon microbial respiration and, subsequently, influence the oxidation state of redox-sensitive radionuclides. In the present work, M枚ssbauer spectroscopy and electron microscopy indicate that irradiation (1 MGy gamma) of 2-line ferrihydrite can lead to conversion to a more crystalline phase, one similar to akaganeite. The room temperature M枚ssbauer spectrum of irradiated hematite shows the emergence of a paramagnetic Fe(III) phase. Spectrophotometric determination of Fe(II) reveals a radiation-induced increase in the rate and extent of ferrihydrite and hematite reduction by S. oneidensis in the presence of an electron shuttle (riboflavin). Characterization of bioreduced solids via XRD indicate that this additional Fe(II) is incorporated into siderite and ferrous hydroxy carbonate, along with magnetite, in ferrihydrite systems, and siderite in hematite systems. This study suggests that mineralogical changes to ferrihydrite and hematite induced by radiation may lead to an increase in bioavailability of Fe(III) for respiration by Fe(III)-reducing bacteria.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700