用户名: 密码: 验证码:
Influence of the Ligand Alkyl Chain Length on the Solubility, Aqueous Speciation, and Kinetics of Substitution Reactions of Water-Soluble M3S4 (M = Mo, W) Clusters Bearing Hydrox
详细信息    查看全文
文摘
Water-soluble [M3S4X3(dhbupe)3]+ diphosphino complexes (dhbupe = 1,2-bis(bis(hydroxybutyl)phosphino)ethane), 1+ (M = Mo, X = Cl) and 2+ (M = W; X = Br), have been synthesized by extending the procedure used for the preparation of their hydroxypropyl analogues by reaction of the M3S4(PPh3)3X4(solvent)x molecular clusters with the corresponding 1,2-bis(bishydroxyalkyl)diphosphine. The solid state structure of the [M3S4X3(dhbupe)3]+ cation possesses a C3 symmetry with a cuboidal M3S4 unit, and the outer positions are occupied by one halogen and two phosphorus atoms of the diphosphine ligand. At a basic pH, the halide ligands are substituted by hydroxo groups to afford the corresponding [Mo3S4(OH)3(dhbupe)3]+ (1OH+) and [W3S4(OH)3(dhbupe)3]+ (2OH+) complexes. This behavior is similar to that found in 1,2-bis(bis(hydroxymethyl)phosphino)ethane (dhmpe) complexes and differs from that observed for 1,2-bis(bis(hydroxypropyl)phosphino)ethane (dhprpe) derivatives. In the latter case, an alkylhydroxo group of the functionalized diphosphine replaces the chlorine ligands to afford Mo3S4 complexes in which the deprotonated dhprpe acts in a tridentate fashion. Detailed studies based on stopped-flow, 31P{1H} NMR, and electrospray ionization mass spectrometry techniques have been carried out in order to understand the solution behavior and kinetics of interconversion between the different species formed in solution: 1 and 1OH+ or 2 and 2OH+. On the basis of the kinetic results, a mechanism with two parallel reaction pathways involving water and OH鈥?/sup> attacks is proposed for the formal substitution of halides by hydroxo ligands. On the other hand, reaction of the hydroxo clusters with HX acids occurs with protonation of the OH鈥?/sup> ligands followed by substitution of coordinated water by X鈥?/sup>.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700