用户名: 密码: 验证码:
Quantitative Structure鈥揂ctivity Relationship Models of Clinical Pharmacokinetics: Clearance and Volume of Distribution
详细信息    查看全文
  • 作者:Vijay K. Gombar ; Stephen D. Hall
  • 刊名:Journal of Chemical Information and Modeling
  • 出版年:2013
  • 出版时间:April 22, 2013
  • 年:2013
  • 卷:53
  • 期:4
  • 页码:948-957
  • 全文大小:335K
  • 年卷期:v.53,no.4(April 22, 2013)
  • ISSN:1549-960X
文摘
Reliable prediction of two fundamental human pharmacokinetic (PK) parameters, systemic clearance (CL) and apparent volume of distribution (Vd), determine the size and frequency of drug dosing and are at the heart of drug discovery and development. Traditionally, estimated CL and Vd are derived from preclinical in vitro and in vivo absorption, distribution, metabolism, and excretion (ADME) measurements. In this paper, we report quantitative structure鈥揳ctivity relationship (QSAR) models for prediction of systemic CL and steady-state Vd (Vdss) from intravenous (iv) dosing in humans. These QSAR models avoid uncertainty associated with preclinical-to-clinical extrapolation and require two-dimensional structure drawing as the sole input. The clean, uniform training sets for these models were derived from the compilation published by Obach et al. (Drug Metab. Disp.2008, 36, 1385鈥?405). Models for CL and Vdss were developed using both a support vector regression (SVR) method and a multiple linear regression (MLR) method. The SVR models employ a minimum of 2048-bit fingerprints developed in-house as structure quantifiers. The MLR models, on the other hand, are based on information-rich electro-topological states of two-atom fragments as descriptors and afford reverse QSAR (RQSAR) analysis to help model-guided, in silico modulation of structures for desired CL and Vdss. The capability of the models to predict iv CL and Vdss with acceptable accuracy was established by randomly splitting data into training and test sets. On average, for both CL and Vdss, 75% of test compounds were predicted within 2.5-fold of the value observed and 90% of test compounds were within 5.0-fold of the value observed. The performance of the final models developed from 525 compounds for CL and 569 compounds for Vdss was evaluated on an external set of 56 compounds. The predictions were either better or comparable to those predicted by other in silico models reported in the literature. To demonstrate the practical application of the RQSAR approach, the structure of vildagliptin, a high-CL and a high-Vdss compound, is modified based on the atomic contributions to its predicted CL and Vdss to propose compounds with lower CL and lower Vdss.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700