用户名: 密码: 验证码:
Thermal Stability and Anisotropic Sublimation of Two-Dimensional Colloidal Bi2Te3 and Bi2Se3 Nanocrystals
详细信息    查看全文
文摘
The structural and compositional stabilities of two-dimensional (2D) Bi2Te3 and Bi2Se3 nanocrystals, produced by both colloidal synthesis and by liquid phase exfoliation, were studied by in situ transmission electron microscopy (TEM) during annealing at temperatures between 350 and 500 °C. The sublimation process induced by annealing is structurally and chemically anisotropic and takes place through the preferential dismantling of the prismatic {011̅0} type planes, and through the preferential sublimation of Te (or Se). The observed anisotropic sublimation is independent of the method of nanocrystal’s synthesis, their morphology, or the presence of surfactant molecules on the nanocrystals surface. A thickness-dependent depression in the sublimation point has been observed with nanocrystals thinner than about 15 nm. The Bi2Se3 nanocrystals were found to sublimate below 280 °C, while the Bi2Te3 ones sublimated at temperatures between 350 and 450 °C, depending on their thickness, under the vacuum conditions in the TEM column. Density functional theory calculations confirm that the sublimation of the prismatic {011̅0} facets is more energetically favorable. Within the level of modeling employed, the sublimation occurs at a rate about 700 times faster than the sublimation of the {0001} planes at the annealing temperatures used in this work. This supports the distinctly anisotropic mechanisms of both sublimation and growth of Bi2Te3 and Bi2Se3 nanocrystals, known to preferentially adopt a 2D morphology. The anisotropic sublimation behavior is in agreement with the intrinsic anisotropy in the surface free energy brought about by the crystal structure of Bi2Te3 or Bi2Se3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700