用户名: 密码: 验证码:
Stability of Coronene at High Temperature and Pressure
详细信息    查看全文
  • 作者:E. Jennings ; W. Montgomery ; Ph. Lerch
  • 刊名:Journal of Physical Chemistry B
  • 出版年:2010
  • 出版时间:December 9, 2010
  • 年:2010
  • 卷:114
  • 期:48
  • 页码:15753-15758
  • 全文大小:294K
  • 年卷期:v.114,no.48(December 9, 2010)
  • ISSN:1520-5207
文摘
The infrared response of coronene (C24H12) under pressure and temperature conditions up to 10 GPa and 300 °C is examined in situ using a diamond anvil cell and synchrotron-source Fourier transform infrared (FTIR) spectroscopy. Coronene is a polycyclic aromatic hydrocarbon that is present in the interstellar medium and meteorites which may have contributed to the Earth’s primordial carbon budget. It appears to undergo a reversible phase transition between 2 and 3.2 GPa at ambient temperature; new intramolecular bonds in the region 840−880 cm−1 result from compression. We document the shift of spectral features to higher wavenumbers with increasing pressure but find this change suppressed by increased temperature. By investigating the stability of coronene over a range of naturally occurring conditions found in a range of environments, we assess the survival of the molecule through various terrestrial and extraterrestrial processes. Coronene has previously been shown to survive atmospheric entry during Earth accretion; this can now be extended to include survival through geological processes such as subduction and silicate melting of the rock cycle, opening the possibility of extraterrestrial coronene predating terrestrial accretion existing on Earth.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700