用户名: 密码: 验证码:
Biophysical and Stabilization Studies of the Chlamydia trachomatis Mouse Pneumonitis Major Outer Membrane Protein
详细信息    查看全文
文摘
Native Chlamydia trachomatis mouse pneumonitis major outer membrane protein (nMOMP) induces effective protection against genital infection in a mouse challenge model. The conformation of nMOMP is crucial to confer this protective immunity. To achieve a better understanding of the conformational behavior and stability of nMOMP, a number of spectroscopic techniques are employed to characterize the secondary structure (circular dichroism), tertiary structure (intrinsic fluorescence) and aggregation properties (static light scattering and optical density) as a function of pH (3−8) and temperature (10−87.5 °C). The data are summarized in an empirical phase diagram (EPD) which demonstrates that the thermal stability of nMOMP is strongly pH-dependent. Three distinctive regions are seen in the EPD. Below the major thermal transition regions, nMOMP remains in its native conformation over the pH range of 3−8. Above the thermal transitions, nMOMP appears in two different structurally altered states; one at pH 3−5 and the other at pH 6−8. The EPD shows that the highest thermal transition point (65 °C) of nMOMP is near pH 6. Several potential excipients such as arginine, sodium citrate, Brij 35, sucrose and guanidine are also selected to evaluate their effects on the stability of nMOMP. These particular compounds increase the aggregation onset temperature of nMOMP by more than 10οC, without affecting its secondary and tertiary structure. These results should help formulate a vaccine using a recombinant MOMP.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700