用户名: 密码: 验证码:
Photoelectrochemical Sensor for the Rapid Detection of in Situ DNA Damage Induced by Enzyme-Catalyzed Fenton Reaction
详细信息    查看全文
  • 作者:Minmin Liang ; Suping Jia ; Shengchao Zhu ; Liang-Hong Guo
  • 刊名:Environmental Science & Technology
  • 出版年:2008
  • 出版时间:January 15, 2008
  • 年:2008
  • 卷:42
  • 期:2
  • 页码:635 - 639
  • 全文大小:504K
  • 年卷期:v.42,no.2(January 15, 2008)
  • ISSN:1520-5851
文摘
Photoelectrochemical sensors were developed for the rapid detection of oxidative DNA damage induced by Fe2+ and H2O2 generated in situ by the enzyme glucose oxidase. The sensor is a multilayer film prepared on a tin oxide nanoparticle electrode by layer-by-layer self-assembly and is composed of separate layers of a photoelectrochemical indicator, DNA, and glucose oxidase. The enzyme catalyzes the formation of H2O2 in the presence of glucose, which then reacts with Fe2+ and generates hydroxyl radicals by the Fenton reaction. The radicals attack DNA in the sensor film, mimicking metal toxicity pathways in vivo. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy)2(dppz)2+ (bpy = 2,2′-bipyridine, dppz = dipyrido[3,2-a:2′,3′-c]phenazine), was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound less Ru(bpy)2(dppz)2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine) was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in Fe2+/glucose in a time-dependent manner. And the detection limit of the first sensor was less than 50 µM. The results were verified independently by fluorescence and gel electrophoresis experiments. When fully integrated with cell-mimicking components, the photoelectrochemical DNA sensor has the potential to become a rapid, high-throughput, and inexpensive screening tool for chemical genotoxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700