用户名: 密码: 验证码:
Trade-off between Processivity and Hydrolytic Velocity of Cellobiohydrolases at the Surface of Crystalline Cellulose
详细信息    查看全文
文摘
Analysis of heterogeneous catalysis at an interface is difficult because of the variety of reaction sites and the difficulty of observing the reaction. Enzymatic hydrolysis of cellulose by cellulases is a typical heterogeneous reaction at a solid/liquid interface, and a key parameter of such reactions on polymeric substrates is the processivity, i.e., the number of catalytic cycles that can occur without detachment of the enzyme from the substrate. In this study, we evaluated the reactions of three closely related glycoside hydrolase family 7 cellobiohydrolases from filamentous fungi at the molecular level by means of high-speed atomic force microscopy to investigate the structure鈥揻unction relationship of the cellobiohydrolases on crystalline cellulose. We found that high moving velocity of enzyme molecules on the surface is associated with a high dissociation rate constant from the substrate, which means weak interaction between enzyme and substrate. Moreover, higher values of processivity were associated with more loop regions covering the subsite cleft, which may imply higher binding affinity. Loop regions covering the subsites result in stronger interaction, which decreases the velocity but increases the processivity. These results indicate that there is a trade-off between processivity and hydrolytic velocity among processive cellulases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700