用户名: 密码: 验证码:
Surface-Engineered Multifunctional Eu:Gd2O3 Nanoplates for Targeted and pH-Responsive Drug Delivery and Imaging Applications
详细信息    查看全文
文摘
In this paper, we report the synthesis of surface-engineered multifunctional Eu:Gd2O3 triangular nanoplates with small size and uniform shape via a high-temperature solvothermal technique. Surface engineering has been performed by a one-step polyacrylate coating, followed by controlled conjugation chemistry. This creates the desired number of surface functional groups that can be used to attach folic acid as a targeting ligand on the nanoparticle surface. To specifically deliver the drug molecules in the nucleus, the folate density on the nanoparticle surface has been kept low. We have also modified the drug molecules with terminal double bond and ester linkage for the easy conjugation of nanoparticles. The nanoparticle surface was further modified with free thiols to specifically attach the modified drug molecules with a pH-responsive feature. High drug loading has been encountered for both hydrophilic drug daunorubicin (∼69% loading) and hydrophobic drug curcumin (∼75% loading) with excellent pH-responsive drug release. These nanoparticles have also been used as imaging probes in fluorescence imaging. Some preliminary experiments to evaluate their application in magnetic resonance imaging have also been explored. A detailed fluorescence imaging study has confirmed the efficient delivery of drugs to the nuclei of cancer cells with a high cytotoxic effect. Synthesized surface-engineered nanomaterials having small hydrodynamic size, excellent colloidal stability, and high drug-loading capacity, along with targeted and pH-responsive delivery of dual drugs to the cancer cells, will be potential nanobiomaterials for various biomedical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700