用户名: 密码: 验证码:
Homeomorphic Isomerization as a Design Element in Container Molecules; Binding, Displacement, and Selective Transport of MCl2 Species (M = Pt, Pd, Ni)
详细信息    查看全文
文摘
The dibridgehead diphosphine ((CH2)14)3P (1) can rapidly turn inside-out (homeomorphic isomerization) to give a mixture of in,in and out,out isomers. The exo directed lone pairs in the latter are able to scavenge Lewis acidic MCl2; cagelike adducts of the in,in isomer, trans-Cl2(P((CH2)14)3P) (M = 2/Pt, 3/Pd, 4/Ni), then form. The NiCl2 unit in 4 may be replaced by PtCl2 or PdCl2, but 2 and 3 do not give similar substitutions. U-tubes are charged with CH2Cl2 solutions of 1 (lower phase), an aqueous solution of K2MCl4 (charging arm; M = Pt, Pd), and an aqueous solution of excess KCl (receiving arm). The MCl2 units are then transported to the receiving arm until equilibrium is reached (up to 22 d). When the receiving arm is charged with KCN, transport is much faster (ca. 100 h) and higher K2MX4 equilibrium ratios are obtained (≥96≤4). Analogous experiments with K2PtCl4/K2PdCl4 mixtures show PdCl2 transport to be more rapid. A similar diphosphine with longer methylene chains, P((CH2)18)3P, is equally effective. No transport occurs in the absence of 1, and other diphosphines or monophosphines assayed give only trace levels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700