用户名: 密码: 验证码:
Role of Histone-Modifying Enzymes and Their Complexes in Regulation of Chromatin Biology
详细信息    查看全文
  • 作者:Renee DesJarlais ; Peter J. Tummino
  • 刊名:Biochemistry
  • 出版年:2016
  • 出版时间:March 22, 2016
  • 年:2016
  • 卷:55
  • 期:11
  • 页码:1584-1599
  • 全文大小:865K
  • ISSN:1520-4995
文摘
In 1964, Alfrey and colleagues proposed that acetylation and methylation of histones may regulate RNA synthesis and described “the possibility that relatively minor modifications of histone structure, taking place on the intact protein molecule, offer a means of switching-on or off RNA synthesis at different loci along the chromosome” [Allfrey, V., Faulkner, R., and Mirsky, A. (1964) Proc. Natl. Acad. Sci. U.S.A. 51, 786]. Fifty years later, this prescient description provides a simple but conceptually accurate model for the biological role of histone post-translational modifications (PTMs). The basic unit of chromosomes is the nucleosome, with double-stranded DNA wrapped around a histone protein oligomer. The “tails” of histone proteins are post-translationally modified, which alters the physical properties of nucleosomes in a manner that impacts gene accessibility for transcription and replication. Enzymes that catalyze the addition and removal of histone PTMs, histone-modifying enzymes (HMEs), are present in large protein complexes, with DNA-binding proteins, ATP-dependent chromatin remodeling enzymes, and epigenetic reader proteins that bind to post-translationally modified histone residues [Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K., and Schapira, M. (2012) Nat. Rev. Drug Discovery 11, 384–400]. The activity of HME complexes is coordinated with that of other chromatin-associated complexes that, together, regulate gene transcription, DNA repair, and DNA replication. In this context, the enzymes that catalyze addition and removal of histone PTMs are an essential component of the highly regulated mechanism for accessing compacted DNA. To fully understand the function of HMEs, the structure of nucleosomes, their natural substrate, will be described. Each major class of HMEs subsequently will be discussed with regard to its biochemistry, enzymatic mechanism, and biological function in the context of a prototypical HME complex.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700