用户名: 密码: 验证码:
Thermal Conduction Across Graphene Cross-Linkers
详细信息    查看全文
  • 作者:Xiangjun Liu ; Gang Zhang ; Yong-Wei Zhang
  • 刊名:Journal of Physical Chemistry C
  • 出版年:2014
  • 出版时间:June 12, 2014
  • 年:2014
  • 卷:118
  • 期:23
  • 页码:12541-12547
  • 全文大小:408K
  • 年卷期:v.118,no.23(June 12, 2014)
  • ISSN:1932-7455
文摘
Controlling the thermal conduction across graphene layers is of great importance for their applications in nanoscale thermal management. However, how to quantitatively control the thermal conduction across the graphene layers is still largely unknown. Here, we performed molecular dynamics simulations to investigate the thermal transport across a junction formed by covalent cross-linkers between two graphene nanoribbons (GNRs). We find that the cross-linkers are effective for transmitting the out-of-plane phonon modes of GNRs, but ineffective for the in-plane modes. Each cross-linker possesses a constant thermal conductance, and there is little thermal coupling between them. Interestingly, the total heat current across the junction is not linearly dependent on the number of cross-linkers; instead, it increases sublinearly initially, and then levels off to about 50% of that of the same size single-layer GNR. A theoretical model is proposed to explain this surprising observation. Our work reveals important new insights into the fundamental principles governing the thermal conduction across chemically cross-linked junctions and provides useful guidelines for the applications of graphene in practical heat management.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700