用户名: 密码: 验证码:
Stable Aqueous Dispersion of Graphene Nanosheets: Noncovalent Functionalization by a Polymeric Reducing Agent and Their Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Det
详细信息    查看全文
文摘
An aqueous dispersion of graphene nanosheets (GNs) has been successfully prepared via chemical reduction of graphene oxide (GO) by hydrazine hydrate in the presence of poly[(2-ethyldimethylammonioethyl methacrylate ethyl sulfate)-co-(1-vinylpyrrolidone)] (PQ11), a cationic polyelectrolyte, for the first time. The noncovalent functionalization of GN by PQ11 leads to a GN dispersion that can be very stable for several months without the observation of any floating or precipitated particles. Several analytical techniques including UV−vis spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) have been used to characterize the resulting GNs. Taking advantages of the fact that PQ11 is a positively charged polymer exhibiting reducing ability, we further demonstrated the subsequent decoration of GN with Ag nanoparticles (AgNPs) by two routes: (1) direct adsorption of preformed, negatively charged AgNPs; (2) in-situ chemical reduction of silver salts. It was found that such Ag/GN nanocomposites exhibit good catalytic activity toward the reduction of hydrogen peroxide (H2O2), leading to an enzymeless sensor with a fast amperometric response time of less than 2 s. The linear detection range is estimated to be from 100 μM to 40 mM (r = 0.996), and the detection limit is estimated to be 28 μM at a signal-to-noise ratio of 3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700