用户名: 密码: 验证码:
Nanomechanical Recognition of Sphingomyelin-Rich Membrane Domains by Atomic Force Microscopy
详细信息    查看全文
文摘
Sphingomyelin (SM) is a reservoir of signaling lipids and forms specific lipid domains in biomembranes together with cholesterol. In this study, atomic force microscopy (AFM) and force measurement were applied to investigate the interaction of SM-binding protein toxin, lysenin, with N-palmitoyl-d-erythro-sphingosylphosphorylcholine (palmitoyl sphingomyelin, PSM) bilayer spread over a mica substrate, in an aqueous buffer solution. Lysenin molecules were grafted on a silicon nitride tip for AFM by siloxane鈥搕hiol鈥揳mide coupling. The bilayers were prepared by the Langmuir鈥揃lodgett (LB)/Langmuir鈥揝chaefer (LS) method. By repeating cycles of tip approach/retraction motion, single-molecular adhesion motions were observed on the force curve, characterized as 鈥渇ishing curves鈥? The addition of cholesterol and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) did not alter the peak force but increased the peak extension. Mixtures of PSM/DOPC/cholesterol exhibited 2-dimensional two-phase domain separation. The characteristic fishing curves were observed exclusively in one of the phases, indicating the selective interaction of the lysenin tip to PSM-rich membrane domains. Our results indicate that the AFM tips conjugated with lysenin are useful to detect the surface distribution of SM-rich membrane domains as well as the nanomechanical properties of the domains.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700