用户名: 密码: 验证码:
High Performance Metal Oxide Field-Effect Transistors with a Reverse Offset Printed Cu Source/Drain Electrode
详细信息    查看全文
文摘
Nonvacuum and photolithography-free copper (Cu) films were prepared by reverse offset printing. The mechanical, morphological, structural, and chemical properties of the Cu films annealed at different temperatures were examined in detail. The Ostwald ripening-induced coalescence and grain growth in the printing Cu films were enhanced with increasing annealing temperature in N2 ambient up to 400 °C. Simultaneously, unwanted chemical impurities such as oxygen, hydrogen, and carbon in the Cu films decreased as the annealing temperature increased. The high electrical conductivity (~6.2 μΩ·cm) of the printing Cu films annealed at 400 °C is attributed to the enlargement of the grain size and reduction of the incorporation of impurities. A printing Cu film was adopted as a source/drain (S/D) electrode in solution processable zinc tin oxide (ZTO) field-effect transistors (FETs), where the ZTO film was prepared by simple spin-coating. The ZTO FETs fabricated at a contact annealing temperature of 250 °C exhibited a promising field-effect mobility of 2.6 cm2/(V s), a threshold voltage of 7.0 V, and an ION/OFF modulation ratio of 2 × 105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700