用户名: 密码: 验证码:
Nonisotopic Reagents for a Cost-Effective Increase in Sample Throughput of Targeted Quantitative Proteomics
详细信息    查看全文
文摘
The new technology of ultrathroughput MS (uMS) transforms the intrinsic capability of analyte multiplexing in mass spectrometry (MS) to sample multiplexing. Core technological advantages of uMS rely on the decoupled use of isotopic quantitation reference and nonisotopic mass coding of samples. These advantages include: (1) high sample-throughput potential, (2) utilization of minimal amounts of expensive stable isotopes for the quantitation reference, and (3) unleashing of the open-source exploration of the chemical structure diversity of nonisotopic reagents to significantly enhance the MS detectability of analytes. A particular uMS method, ultrathroughput multiple reaction monitoring (uMRM), is reported for one-experiment quantitation of a surrogate peptide (SVILLGR) of prostate specific antigen (PSA) in multiple serum samples. Following derivatization of the pair of spiked, isotopic reference (SVILLGR*) and endogenous, native peptide in each sample, all samples were pooled for a step of simultaneous enrichment and cleanup of derivatized peptide pairs using immobilized antibody. The MS analysis of the pooled sample reported the quantity and sample origin of the surrogate peptide. Several analyses with different sample throughput were presented, with the highest being 15-in-1. Screening of nonisotopic reagents used combinatorial libraries of peptidyl compounds, and the reagent selection was based on the derivatization effectiveness and the capability of MS signal enhancement for the peptide. The precision, accuracy, and linearity of the uMRM MS technology were found to be comparable with standard isotope dilution MRM MS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700