用户名: 密码: 验证码:
Adsorption and Surface Reaction of NO2 on a Stepped Au(997) Surface: Enhanced Reactivity of Low-Coordinated Au Atoms
详细信息    查看全文
文摘
The adsorption and surface reaction of NO2 on a stepped Au(997) surface were investigated by temperature-programmed desorption, X-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy. At low NO2 exposures, NO2 chemisorbs molecularly and reversibly on the Au(997) surface at 130 K, but low-coordinated Au atoms on the (111) step sites exhibit enhanced reactivity. NO2(a) chemisorbed on the (111) step sites is thermally more stable than that chemisorbed on the (111) terrace sites. At large NO2 exposures, an amorphous physisorbed N2O4 multilayer forms at 130 K. Subsequent heating causes the isomerization of the physisorbed N2O4 multilayer (O2N鈥揘O2) to nitrite鈥揘2O4 (ONO鈥揘O2) and the subsequent transformation of nitrite鈥揘2O4 into nitrosonium nitrate (NO+NO3鈥?/sup>) that further decomposes into NO(g) and NO2(g) at elevated temperatures, forming O(a) on the surface. These surface reactions could be utilized to prepare oxygen adatoms on inert Au surfaces under ultrahigh vacuum conditions. Our results broaden the fundamental understanding of the interaction between small molecules and Au surfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700