用户名: 密码: 验证码:
Physicochemical Characterization of Rice Straw Pretreated with Sodium Hydroxide in the Solid State for Enhancing Biogas Production
详细信息    查看全文
文摘
The biogas yield of rice straw during anaerobic digestion can be substantially increased through solid-state sodium hydroxide (NaOH) pretreatment. This study was conducted to explore the mechanisms of biogas yield enhancement. The chemical compositions of the pretreated rice straw were first analyzed. Fourier transform infrared (FTIR), hydrogen-1 nuclear magnetic resonance spectroscopy (1H NMR), X-ray diffraction (XRD), and gas permeation chromatography (GPC) were then used to investigate the changes of chemical structures and physical characteristics of lignin, hemicellulose, and cellulose. The results showed that the biogas yield of 6% NaOH-treated rice straw was increased by 27.3−64.5%. The enhancement of the biogas yield was attributed to the improvement of biodegradability of the rice straw through NaOH pretreatment. Degradation of 16.4% cellulose, 36.8% hemicellulose, and 28.4% lignin was observed, while water-soluble substances were increased by 122.5%. The ester bond of lignin−carbohydrate complexes (LCCs) was destroyed through the hydrolysis reaction, releasing more cellulose for biogas production. The linkages of interunits and the functional groups of lignin, cellulose, and hemicellulose were either broken down or destroyed, leading to significant changes of chemical structures. The original lignin with a large molecular weight and three-dimensional network structure became one with a small molecular weight and linear structure after NaOH pretreatment. The cellulosic crystal style was not obviously changed, but the crystallinity of cellulose increased. The changes of chemical compositions, chemical structures, and physical characteristics made rice straw become more available and biodegradable and thus were responsible for the enhancement of the biogas yield.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700