用户名: 密码: 验证码:
Theoretical and experimental investigation on optimization of a non-contact air conveyor
详细信息    查看全文
  • 作者:Wei Zhong 钟伟 ; Xin Li 黎鑫 ; Guo-liang Tao 陶国良 ; Bo Lu 路波…
  • 关键词:optimization ; genetic algorithm ; porous media ; air conveyor ; pressure distribution
  • 刊名:Journal of Central South University
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:2
  • 页码:353-361
  • 全文大小:1,567 KB
  • 参考文献:[1]DEVITT D. The physics of glass flotation [J]. Semiconductor International Japan, 2009, 5: 20–25.
    [2]CANDAELE V, LAMBERT P, DELCHAMBRE A. Non-contact handling in microassembly: Acoustical levitation [J]. Precision Engineering, 2005, 29: 491–505.CrossRef
    [3]CHANDRA C J G, SPINIVAS Y L, SEETHARAMU K N, PARAMESWARAN M A. Investigation of air film conveyor pressurized through multiple holes [J]. Finite Elements in Analysis and Design, 1990, 6: 235–243.CrossRef
    [4]FOURKA M, BONIS M. Comparison between externally pressurized gas thrust bearings with different orifice and porous feeding systems [J]. Wear, 1997, 210: 311–317.CrossRef
    [5]LUONG T S, POTZE W, POST J B, van OSTAYEN R A J, van BEEK A. Numerical and experimental analysis of aerostatic thrust bearings with porous restrictors [J]. Tribology International, 2004, 37: 825–832.CrossRef
    [6]BELFORTE G, RAPARELLI T, VIKTOROV V, TRIVELLA A. Permeability and inertial coefficients of porous media for air bearing feeding systems [J]. ASME Journal of Tribology, 2007, 129: 705–711.CrossRef
    [7]LEE H G, LEE D G. Design of a large LCD panel handling air conveyor with minimum air consumption [J]. Mechanism and Machine Theory, 2006, 41: 790–806.CrossRef MATH
    [8]AMANO K, YOSHIMOTO S, MIYATAKE M, HIRAYAMA T. Basic investigation of noncontact transportation system for large TFT-LCD glass sheet used in CCD inspection section [J]. Precision Engineering, 2011, 35(1): 58–64.CrossRef
    [9]OIWA N, MASUDA M, HIRAYAMA T, MATSUOKA T, YABE H. Deformation and flying height orbit of glass sheets on aerostatic porous bearing guides [J]. Tribology International, 2012, 48: 2–7.CrossRef
    [10]HASHIMOTO H, MATSUMOTO K. Improvement of operating characteristics of high-speed hydrodynamic journal bearings by optimum design, Part I: Formulation of methodology and its application to elliptical bearing design [J]. ASME Journal of Tribology, 2001, 123(4): 305–312.CrossRef
    [11]WANG N Z, CHANG L H, CHA K C. Engineering optimum design of fluid-film lubricated bearings [J]. Tribology Transactions, 2000, 43(3): 377–386.CrossRef
    [12]KANG T S, CHOI D H, JEONG T G. Optimal design of HDD air-lubricated slider bearings for improving dynamic characteristics and operating performance [J]. ASME Journal of Tribology, 2001, 123: 541–547.CrossRef
    [13]SRINIVAS N, DEB K. Multi-objective function optimization using nondominated sorting genetic algorithms [J]. Evolutionary Computations, 1995, 2(3): 221–248.CrossRef
    [14]HIRANI H, SUH N P. Journal bearing design using multiobjective genetic algorithm and axiomatic design approaches [J]. Tribology International, 2005, 38: 481–491.CrossRef
    [15]BHAT N, BARRANS S M. Design and test of a Pareto optimal flat pad aerostatic bearing [J]. Tribology International, 2008, 41: 181–188.CrossRef
    [16]WANG N Z, CHANG Y Z. A Hybrid search algorithm for Porous air bearings optimization [J]. Tribology Transactions, 2002, 45(4): 471–477.CrossRef MathSciNet
    [17]LU C J, WANG T K. New designs of HDD air-lubricated sliders via topology optimization [J]. ASME Journal of Tribology, 2004, 126: 171–176.CrossRef
    [18]KOTERA H, SHIMA S. Shape optimization to perform prescribed air lubrication using genetic algorithm [J]. Tribology Transactions, 2000, 43(4): 837–841.CrossRef
    [19]WANG N, TSAI C M, CHA K C. Optimum design of externally pressurized air bearing using cluster open MP [J]. Tribology International, 2009, 42: 1180–1186.CrossRef
    [20]WANG N Z, CHANG Y Z. Application of the genetic algorithm to the multi-objective optimization of air bearings [J]. Tribology Letters, 2004, 17(2): 119–128.CrossRef
    [21]HIRANI H. Multiobjective optimization of a journal bearing using the Pareto optimality concept [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2004, 218(4): 323–336.CrossRef
    [22]BOEDO S, ESHKABILOV S L. Optimal shape design of steadily loaded journal bearings using genetic algorithms [J]. Tribology Transactions, 2003, 46(1): 134–143.CrossRef
    [23]ZENGEYA M, GADALA M. Optimization of journal bearings using a hybrid scheme [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221(5): 591–607.CrossRef
    [24]FEDERICO C, MARCELLO C. Multi-objective optimization of a rectangular air bearing by means of genetic algorithms [J]. Journal of Mechanics Engineering and Automation, 2012, 2: 355–364.
    [25]ZHONG W, LI X, LIU F H, TAO G L, LU B, KAGAWA T. Measurement and correlation of pressure drop characteristics for air flow through sintered metal porous media [J]. Transport in Porous Media, 2014, 101(1): 53–67.CrossRef
    [26]ZHONG W, TAO G L, LI X, KAWASHIMA K, KAGAWA T. Determination of flow rate characteristics of porous media using charge method [J]. Flow Measurement and Instrumentation, 2011, 22: 201–207.CrossRef
    [27]DEB K, PRATAP A, AGARWAL S. A fast and elitist multi-objective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197.CrossRef
  • 作者单位:Wei Zhong 钟伟 (1) (2)
    Xin Li 黎鑫 (3)
    Guo-liang Tao 陶国良 (3)
    Bo Lu 路波 (4)
    Toshiharu Kagawa 香川利春 (5)

    1. School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
    2. Wuxi Pneumatic Technology Research Institute Co. Ltd., Wuxi, 214072, China
    3. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, 310027, China
    4. Boyan Pneumatic Technology Institute of Ningbo, Fenghua, 315500, China
    5. Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
  • 刊物类别:Engineering
  • 刊物主题:Engineering, general
    Metallic Materials
    Chinese Library of Science
  • 出版者:Central South University, co-published with Springer
  • ISSN:2227-5223
文摘
Air film conveyors equipped with porous pads have been developed to bring the liquid crystal display (LCD) into a non-contact state during transportation process. In this work, a theoretical model including flow property of porous media and Reynolds equation is established within a representative region in order to optimize the design parameters of a partial porous air conveyor. With the theoretical model, an optimization method using nondominated sorting genetic algorithm–II (NSGA-II) is applied for a two-objective optimization to achieve a minimum air consumption and maximum load capacity. Three Pareto-optimal solutions are selected to analyze the influence of each parameter on the characteristics of the air conveyor, and the results indicate that the position of the porous pads has the most significant impact on the performance and of course must be determined with care. Furthermore, experimental results in terms of the supporting force versus gap clearance show that the optimized air conveyor can greatly improve the load capacity over the normal one, indicating that the optimization method is applicable for practical use. Keywords optimization genetic algorithm porous media air conveyor pressure distribution

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700