用户名: 密码: 验证码:
Impact of a Dielectric Layer on the Resonant Conditions of Nanograting Structures
详细信息    查看全文
  • 作者:Chao Niu (1)
    Tiffany Huang (1)
    Xin Zhang (2)
    Haitao Liu (2)
    Weihua Zhang (3)
    Jonathan Hu (1)

    1. Department of Electrical and Computer Engineering
    ; Baylor University ; Waco ; TX ; 76798 ; USA
    2. Key Laboratory of Optical Information Science and Technology
    ; Ministry of Education ; Institute of Modern Optics ; Nankai University ; Tianjin ; 300071 ; China
    3. College of Engineering and Applied Sciences
    ; Nanjing University ; Nanjing ; 210093 ; China
  • 关键词:Nanostructures ; Metallic grating ; Surface plasmons ; Sensors
  • 刊名:Plasmonics
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:10
  • 期:2
  • 页码:419-427
  • 全文大小:2,534 KB
  • 参考文献:1. Ji艡铆, H, Sinclair, SY, Gnter, G (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54: pp. 3-15
    2. William, LB, Alain, D, Thomas, WE (2003) Surface plasmon subwavelength optics. Nature 424: pp. 824-830 CrossRef
    3. Ekmel, O (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311: pp. 189-193 CrossRef
    4. Wen, DL, Fei, D, Jonathan, H, Stephen, YC (2011) Three dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. Opt Express 19: pp. 3925-3936 CrossRef
    5. Jeffrey, NA, Paige Hall, W, Olga, L, Nilam, CS, Jing, Z, Richard, P, Van, D (2008) Biosensing with plasmonic nanosensors. Nat Mater 7: pp. 442-453 CrossRef
    6. Alexandre, GB (2012) Plasmonics for future biosensors. Nat Photon 6: pp. 709-713 CrossRef
    7. Ian, MW, Xudong, F (2008) On the performance quantification of resonant refractive index sensors. Opt Express 16: pp. 1020-1028 CrossRef
    8. Lin W, Xiaodong Z, Ping B (2014) Plasmonic metals for nanohole-array surface plasmon field-enhanced fluorescence spectroscopy biosensing. Plasmonics. 9:825鈥?33
    9. Tiffany H, Xueli L, Jonathan H (2013) Plasmonic grating nanostructure to detect refractive index. In: Frontiers in Optics. paper FTh2D, Orlando
    10. Gordon, IIJG, Ernst, S (1980) Surface plasmons as a probe of the electrochemical interface. Surface Sci 101: pp. 49-506
    11. Claes, N, Bo, L, Tommy, L (1982) Gas detection by means of surface plasmon resonance. Sens Actuators 3: pp. 79-88 CrossRef
    12. Kahl, M, Voges, E (2000) Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures. Phys Rev B 61: pp. 14078-14088 CrossRef
    13. Francisco, L, Ignacio, T, Mario, MJ (2010) Light intensity enhancement inside the grooves of metallic gratings. J Opt Soc Am B 27: pp. 1998-2006 CrossRef
    14. L贸pez-R铆os, T, Wirgin, A (1984) Role of waveguide and surface plasmon resonances in surface-enhanced Raman scattering at coldly evaporated metallic films. Solid State Commun 52: pp. 197-201 CrossRef
    15. Wirgin, A, Maradudin, AA (1985) Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light. Phys Rev B 31: pp. 5573-5576 CrossRef
    16. Wirgin, A, Maradudin, AA (1986) Resonant response of a bare metallic gratings to S-polarized light. Prog Surf Sci 22: pp. 1-99 CrossRef
    17. Garc铆a-Vidal, FJ, S谩nchez-Dehesa, J, Dechelette, A, Bustrarret, E, Lpez-Ros, T, Fournier, T, Pannetier, B (1999) Localized surface plasmons in lamellar metallic gratings. J Light wave Technol 17: pp. 2191-2195 CrossRef
    18. Garca-Vidal, FJ, Mart铆n-Moreno, L (2002) Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys Rev B 66: pp. 155412 CrossRef
    19. L贸pez-R铆os, T, Mendoza, D, Garc铆a-Vidal, FJ, Snchez-Dehesa, J, Pannetier, B (1998) Surface shape resonances in lamellar metallic gratings. Phys Rev Lett 81: pp. 665-668 CrossRef
    20. Lalanne, P, Hugonin, JP, Astilean, S, Palamaru, M, M枚ller, KD (2000) One-mode model and Airy-like formulae for one-dimensional metallic gratings. J Opt A: Pure Appl Opt 2: pp. 48-51 CrossRef
    21. Yilei, L, Hugen, Y, Damon, BF, Xiang, M, Wenjuan, Z, Richard, MO, Tony, FH, Phaedon, A (2014) Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. Nano Lett 14: pp. 1573-1577 CrossRef
    22. Moharam, MG, Grann, EB, Pommet, DA, Gaylord, TK (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 12: pp. 1068-1076 CrossRef
    23. Li, XF, Yu, SF (2010) Extremely high sensitive plasmonic refractive index sensors based on metallic grating. Plasmonics 5: pp. 389-394 CrossRef
    24. Lifeng, L (1996) Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J Opt Soc Am A 13: pp. 1024-1035 CrossRef
    25. Palik ED (1985) Handbook of Optical Constants of Solids Part II. Academic
    26. Patrice, G, Jean-Philippe, T, Evangelos, G, Romain, B, Mikhail, AK, Marlan, OS, Federico, C (2010) Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. Nano Lett 10: pp. 4880-4883 CrossRef
    27. Siwen, Z, Haitao, L, Guoguang, M (2011) Electromagnetic enhancement by a periodic array of nanogrooves in a metallic substrate. J Opt Soc Am A 28: pp. 879-886 CrossRef
    28. Maier, SA (2007) Plasmonics: Fundamentals and Applications. Springer, New York
    29. Likang, C, Jing, Z, Wenli, B, Qing, W, xin, W, Guofeng, S (2010) Spatial mode selection by the phase modulation of subwavelength plasmonic grating. Plasmonics 5: pp. 423-428 CrossRef
    30. Alina, K, Olga, K, Mark, A, Benny, H, Aid, G, Ibrahim, A (2009) Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment. Plasmonics 4: pp. 281-292 CrossRef
    31. Adam, DM, Richard, PVD (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3: pp. 1057-1062 CrossRef
    32. Alexandre, GB, Reuven, G, Brian, L, Karen, LK (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20: pp. 4813-4815 CrossRef
    33. Na, L, Martin, M, Tomas, W, Mario, H, Harald, G (2003) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10: pp. 2342-2348
    34. Hyungsoon, I, Si, HL, Nathan, JW, Timothy, WJ, Nathan, CL, Prashant, N, David, JN, Sang-Hyun, Oh (2011) Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. ACS Nano 5: pp. 6244-6253 CrossRef
    35. Antonine, L, Hyungsoon, I, Nathan, CL, Sang-Hyun, Oh (2007) Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl Phys Lett 90: pp. 243110 CrossRef
    36. Jian, Y, Pol, VD (2011) Improvement of figure of merit for gold nanobar array plasmonic sensors. Plasmonics 6: pp. 665-671 CrossRef
    37. Yang, S, Jianhua, Z, Tianran, L, Yuting, T, Ruibin, J, Mingxuan, L, Guohui, X, Jinhao, Z, ZhangKai, Z, Xuehua, W, Chongjun, J, Jianfang, W (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4: pp. 2381
    38. Lin, P (2007) Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor. Appl Phys Lett 91: pp. 123112 CrossRef
    39. Imogen, MP, Yousif, AK, Koray, A, Harry, AA (2011) Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. ACS Nano 5: pp. 8167-8174 CrossRef
    40. Jan, B, Andreas, T, Arpad, J, Ulrich, H, Carsten, S (2010) The optimal aspect ratio of Gold nanorods for plasmonic bio-sensing. Plasmonics 5: pp. 161-167 CrossRef
    41. Jianjun, C, Zhi, L, Yujiao, Z, Zhongliang, D, Jinghua, X, Qihuang, G (2013) Coupled-resonator-induced fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8: pp. 1627-1631 CrossRef
    42. Hyun, CK, Xing, C (2009) SERS-active substrate based on gap surface plasmon polaritons. Opt Express 17: pp. 17234-17241 CrossRef
    43. Siwen, Z, Haitao, L, Guoguang, M (2010) Electromagnetic enhancement by a single nano-groove in metallic substrate. J Opt Soc Am A 27: pp. 1555-1560 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
We study the resonant wavelength of nanograting structures covered by a dielectric medium. We find that the resonant wavelength oscillates as the thickness of the thin dielectric layer increases due to the cavity formed by the dielectric layer. The amplitude of this oscillation in the resonant wavelength is small when the minimum reflection occurs in the nanograting structure. For a plasmonic sensor covered by a dielectric medium, a small oscillation in the resonant wavelength as the thickness of the dielectric medium changes is preferred. We also study the impact of a rounded corner on the resonant wavelength and find that the rounded corners with a small radius of r effectively reduce the nanogroove depth by about 0.2 r. Results from the finite-difference time-domain (FDTD) method agree very well with the phase-matching condition, using parameters calculated from the rigorous coupled-wave analysis (RCWA) method. These results will lead to a better understanding of the accuracy of plasmonic sensors covered by dielectric media.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700