用户名: 密码: 验证码:
A Novel Application of Evolutionary Computing in Process Systems Engineering
详细信息    查看全文
文摘
In this article we present a Multi-Objective Genetic Algorithm for Initialization (MOGAI) that finds a starting sensor configuration for Observability Analysis (OA), this study being a crucial stage in the design and revamp of process-plant instrumentation. The MOGAI is a binary-coded genetic algorithm with a three-objective fitness function based on cost, reliability and observability metrics. MOGAI’s special features are: dynamic adaptive bit-flip mutation and guided generation of the initial population, both giving a special treatment to non-feasible individuals, and an adaptive genotypic convergence criterion to stop the algorithm. The algorithmic behavior was evaluated through the analysis of the mathematical model that represents an ammonia synthesis plant. Its efficacy was assessed by comparing the performance of the OA algorithm with and without MOGAI initialization. The genetic algorithm proved to be advantageous because it led to a significant reduction in the number of iterations required by the OA algorithm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700