用户名: 密码: 验证码:
Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow–Robin perivascular spaces
详细信息    查看全文
  • 作者:Russel J. Reiter (1)
    Dun Xian Tan (1)
    Seok Joong Kim (1)
    Maria Helena C. Cruz (1)
  • 关键词:Melatonin ; Suprachiasmatic nucleus ; Pineal gland ; Canaliculi ; Cerebrospinal fluid ; Tanycytes ; Virchow–Robin space ; Oxidative damage
  • 刊名:Brain Structure and Function
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:219
  • 期:6
  • 页码:1873-1887
  • 全文大小:1,420 KB
  • 参考文献:1. Acuna-Castroviejo D, Lopez LC, Escames G, Lopez A, Garcia JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 11:221-40
    2. Agez L, Laurent V, Pevet P, Masson-Pevet M, Gauer F (2007) Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience 144:522-30
    3. Agez L, Laurent V, Guerrero HY, Pevet P, Masson-Pevet M, Gauer F (2009) Endogenous melatonin provides an effective circadian message to both the suprachiasmatic nuclei and the pars tuberalis of the rat. J Pineal Res 46:95-05
    4. Arendt J, Wirz-Justice A, Bradtke J (1978) Annual rhythm of serum melatonin in man. Neurosci Lett 7:327-30
    5. Barlow-Walden LR, Reiter RJ, Abe M, Pablos MI, Menendez-Pelaez A, Chen LD, Poeggeler B (1995) Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int 26:497-02
    6. Barrett P, Bolborea M (2012) Molecular pathways involved in seasonal body weight and reproductive responses governed by melatonin. J Pineal Res 52:376-88
    7. Bolborea M, Dale N (2013) Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci 36:91-00
    8. Borison HL, Borison R, McCarthy LE (1980) Brain stem penetration by horseradish peroxidase from cerebrospinal fluid spaces in the cat. Exp Neurol 69:271-89
    9. Bothorel B, Barassin S, Saboureau M, Perreau S, Vivien-Roels B, Malan A, Pevet P (2002) In the rat, exogenous melatonin increases the amplitude of pineal melatonin secretion by a direct action on the circadian clock. Eur J Neurosci 16:1090-098
    10. Brightman MW (1968) The intracerebral movement of proteins injected into the blood and cerebrospinal fluid of mice. Prog Brain Res 29:19-7
    11. Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648-77
    12. Brown GM, Young SN, Gauthier H, Tsiu H, Grota LJ (1979) Melatonin in human cerebrospinal fluid in daytime: its origin and variation with age. Life Sci 25:936-79
    13. Bruce J, Tamarkin L, Riedel C, Markey S, Oldfield E (1991) Sequential cerebrospinal fluid and plasma sampling in humans: 24-hour melatonin measurements in normal subjects and after peripheral sympathectomy. J Clin Endocrinol Metab 72:819-23
    14. Cabrera J, Reiter RJ, Tan DX, Qi W, Sainz RM, Mayo JC, Garcia JJ, Kim SJ, El-Sakkary G (2000) Melatonin reduces oxidative neurotoxicity due to quinolinic acid: in vitro and in vivo findings. Neuropharmacology 39:507-14
    15. Cardinali DP (1981) Melatonin: a mammalian pineal hormone. Endocr Rev 2:327-46
    16. Cardinali DP, Srinivasan V, Brzezinski A, Brown GM (2012a) Melatonin and its analogs in insomnia and depression. J Pineal Res 52:365-74
    17. Cardinali DP, Vigo DE, Olivar N, Vidal MF, Furio AM, Brusco LI (2012b) Therapeutic application in mild cognitive impairment. Am J Neurodegener Dis 1:280-91
    18. Corrales A, Martinez P, Garcia S, Vidal V, Garcia E, Florez J, Sanchez-Barcelo EJ, Martinez-Cue C, Rueda N (2013) Long-term oral administration of melatonin improve special learning and memory and protects against cholinergic degeneration in middle-aged Ts65Dn mice, a model of Down syndrome. J Pineal Res 54:346-58
    19. Dabbeni-Sala F, Di Santo S, Franceschini D, Skaper SD, Giusti P (2001) Melatonin protects against 6-OHDA-induced neurotoxicity in rats: a role for mitochondrial complex I activity. FASEB J 15:164-70
    20. de Oliveira Silva S, Ximenes VF, Livramento JA, Catalani LH, Campa A (2005) High concentrations of the melatonin metabolite, N1-acetyl-N2-formyl-5-methoxykynuramine, in cerebrospinal fluid of patients with meningitis: a possible immunomodulatory mechanism. J Pineal Res 39:302-06
    21. Debus OM, Lerchl A, Bothe HW, Bremer J, Fiedler B, Franssen M, Koehring J, Steils M, Kurlemann G (2002) Spontaneous central melatonin secretion and resorption kinetics of exogenous melatonin: a ventricular CSF study. J Pineal Res 33:213-17
    22. Dochi M, Suwazono Y, Sakata K, Okubo Y, Oishi M, Tanaka K, Kobayashi E, Nogawa K (2009) Shift work is a risk factor for increased cholesterol level: a 14-year prospective cohort study in 6886 male workers. Occup Environ Med 66:592-97
    23. Dubocovich ML (2007) Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med 8(Supplement 3):34-2
    24. Dubocovich ML, Hudson RL, Sumaya IC, Masana MI, Manna E (2005) Effect of MT1 melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in C57BL/6 mouse. J Pineal Res 39:113-20
    25. Elliott HW, Sutherland VC (1952) The oxygen uptake of human cerebral cortex slices and the effects of some inhibitors. J Cell Physiol 40:221-41
    26. Filipski E, Levi F (2009) Circadian disruption in experimental cancer processes. Integr Cancer Ther 8:298-02
    27. Fonken LK, Aubrecht TG, Melendez-Fernandez OH, Weil ZM, Nelson RJ (2013) Dim light at night disturbs molecular c
  • 作者单位:Russel J. Reiter (1)
    Dun Xian Tan (1)
    Seok Joong Kim (1)
    Maria Helena C. Cruz (1)

    1. Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
  • ISSN:1863-2661
文摘
Historically, the direct release of pineal melatonin into the capillary bed within the gland has been accepted as the primary route of secretion. Herein, we propose that the major route of melatonin delivery to the brain is after its direct release into the cerebrospinal fluid (CSF) of the third ventricle (3V). Melatonin concentrations in the CSF are not only much higher than in the blood, also, there is a rapid nocturnal rise at darkness onset and precipitous decline of melatonin levels at the time of lights on. Because melatonin is a potent free radical scavenger and antioxidant, we surmise that the elevated CSF levels are necessary to combat the massive free radical damage that the brain would normally endure because of its high utilization of oxygen, the parent molecule of many toxic oxygen metabolites, i.e., free radicals. Additionally, the precise rhythm of CSF melatonin provides the master circadian clock, the suprachiasmatic nucleus, with highly accurate chronobiotic information regarding the duration of the dark period. We predict that the discharge of melatonin directly into the 3V is aided by a number of epithalamic structures that have heretofore been overlooked; these include interpinealocyte canaliculi and evaginations of the posterodorsal 3V that directly abut the pineal. Moreover, the presence of tanycytes in the pineal recess and/or a discontinuous ependymal lining in the pineal recess allows melatonin ready access to the CSF. From the ventricles melatonin enters the brain by diffusion and by transport through tanycytes. Melatonin-rich CSF also circulates through the aqueduct and eventually into the subarachnoid space. From the subarachnoid space surrounding the brain, melatonin penetrates into the deepest portions of the neural tissue via the Virchow–Robin perivascular spaces from where it diffuses into the neural parenchyma. Because of the high level of pineal-derived melatonin in the CSF, all portions of the brain are better shielded from oxidative stress resulting from toxic oxygen derivatives.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700