用户名: 密码: 验证码:
Three-Dimensional Crystal Plasticity Finite Element Simulation of Hot Compressive Deformation Behaviors of 7075 Al Alloy
详细信息    查看全文
  • 作者:Lei-Ting Li (1) (2)
    Y. C. Lin (1) (2)
    Ling Li (3)
    Lu-Ming Shen (3)
    Dong-Xu Wen (1) (2)

    1. School of Mechanical and Electrical Engineering
    ; Central South University ; Changsha ; 410083 ; China
    2. State Key Laboratory of High Performance Complex Manufacturing
    ; Changsha ; 410083 ; China
    3. School of Civil Engineering
    ; The University of Sydney ; Sydney ; NSW ; 2006 ; Australia
  • 关键词:alloy ; crystal plasticity ; hot deformation ; microstructural evolution ; representative volume element
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:24
  • 期:3
  • 页码:1294-1304
  • 全文大小:4,741 KB
  • 参考文献:1. Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, / Mater. Des., 2011, 32, p 1733鈥?759 CrossRef
    2. D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri, and V.S. Sarma, New Insights into the Relationship Between Dynamic Softening Phenomena and Efficiency of Hot Working Domains of a Nitrogen Enhanced 316L(N) Stainless Steel, / Mater. Sci. Eng. A, 2014, 598, p 368鈥?75 CrossRef
    3. A. 艁ukaszek-So艂ek and J. Krawczyk, The Analysis of the Hot Deformation Behaviour of the Ti-3Al-8V-6Cr-4Zr-4Mo Alloy, Using Processing Maps, A Map of Microstructure and of Hardness, / Mater. Des., 2015, 65, p 165鈥?73 CrossRef
    4. B. Thossatheppitak, V. Uthaisangsuk, P. Mungsuntisuk, S. Suranuntchai, and A. Manonukul, Flow Behaviour of Nickel Aluminium Bronze Under Hot Deformation, / Mater. Sci. Eng. A, 2014, 604, p 183鈥?90 CrossRef
    5. S.V. Sajadifar and G.G. Yapici, Elevated Temperature Mechanical Behavior of Severely Deformed Titanium, / J. Mater. Eng. Perform., 2014, 23, p 1834鈥?844 CrossRef
    6. I. Balasundar, T. Raghu, and B.P. Kashyap, Modeling the Hot Working Behavior of Near-伪 Titanium Alloy IMI834, / Prog. Nat. Sci. Mater. Int., 2013, 23, p 598鈥?07 CrossRef
    7. N. Kotkunde, A.D. Deole, A.K. Gupta, and S.K. Singh, Comparative Study of Constitutive Modeling for Ti-6Al-4V Alloy at Low Strain Rates and Elevated Temperatures, / Mater. Des., 2014, 55, p 999鈥?005 CrossRef
    8. N. Kotkunde, H.N. Krishnamurthy, P. Puranik, A.K. Gupta, and S.K. Singh, Microstructure Study and Constitutive Modeling of Ti-6Al-4V Alloy at Elevated Temperatures, / Mater. Des., 2014, 54, p 96鈥?03 CrossRef
    9. G.Z. Kang, A Visco-Plastic Constitutive Model for Ratcheting of Cyclically Stable Materials and Its Finite Element Implementation, / Mech. Mater., 2004, 36, p 299鈥?12 CrossRef
    10. H.R.R. Ashtiani, H. Bisadi, and M. Adabjou, Modeling of Microstructural Evolution During the Hot Rolling of Aluminum Alloy, / Int. Rev. Model. Simul., 2010, 3, p 1129鈥?136
    11. Y.C. Lin, M.S. Chen, and J. Zhong, Numerical Simulation for Stress/Strain Distribution and Microstructural Evolution in 42CrMo Steel During Hot Upsetting Process, / Comput. Mater. Sci., 2008, 43, p 1117鈥?122 CrossRef
    12. Y.C. Lin and M.S. Chen, Numerical Simulation and Experimental Verification of Microstructure Evolution in a 3-Dimensional Hot Upsetting Process, / J. Mater. Process. Technol., 2009, 209, p 4578鈥?583 CrossRef
    13. J. Liu, Z.S. Cui, and C.X. Li, Analysis of Metal Workability by Integration of FEM and 3-D Processing Maps, / J. Mater. Process. Technol., 2008, 205, p 497鈥?05 CrossRef
    14. O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud, Evaluation of Finite Element Based Analysis of 3D Multicrystalline Aggregates Plasticity: Application to Crystal Plasticity Model Identification and the Study of Stress and Strain Fields Near Grain Boundaries, / Int. J. Plast., 2005, 21, p 691鈥?22 CrossRef
    15. G.B. Sarma, B. Radhakrishnan, and T. Zacharia, Finite Element Simulations of Cold Deformation at the Mesoscale, / Comput. Mater. Sci., 1998, 12, p 105鈥?23 CrossRef
    16. F. Roters, Application of Crystal Plasticity FEM from Single Crystal to Bulk Polycrystal, / Comput. Mater. Sci., 2005, 32, p 509鈥?17 CrossRef
    17. S.Y. Li, B.R. Donohue, and S.R. Kalidindi, A Crystal Plasticity Finite Element Analysis of Cross-Grain Deformation Heterogeneity in Equal Channel Angular Extrusion and Its Implications for Texture Evolution, / Mater. Sci. Eng. A, 2008, 480, p 17鈥?3 CrossRef
    18. W.J. He, S.H. Zhang, A. Prakash, and D. Helm, A Hierarchical Multi-Scale Model for Hexagonal Materials Taking into Account Texture Evolution During Forming Simulation, / Comput. Mater. Sci., 2014, 82, p 464鈥?75 CrossRef
    19. M. Liu, A.K. Tieu, C. Lu, Ht Zhu, and G.Y. Deng, A Crystal Plasticity Study of the Effect of Friction on the Evolution of Texture and Mechanical Behaviour in the Nano-Indentation of an Aluminium Single Crystal, / Comput. Mater. Sci., 2014, 81, p 30鈥?8 CrossRef
    20. D.K. Kim, K.H. Jung, W.W. Park, Y.T. Im, and Y.S. Lee, Numerical Study of the Effect of Prior Deformation History on Texture Evolution during Equal Channel Angular Pressing, / Comput. Mater. Sci., 2014, 81, p 68鈥?8 CrossRef
    21. R. Quey, P.R. Dawson, and F. Barbe, Large-Scale 3D Random Polycrystals for the Finite Element Method: Generation, Meshing and Remeshing, / Comput. Methods Appl. Mech. Eng., 2011, 200, p 1729鈥?745 CrossRef
    22. M. Zhang, J. Zhang, and D.L. McDowell, Microstructure-Based Crystal Plasticity Modeling of Cyclic Deformation of Ti-6Al-4V, / Int. J. Plast., 2007, 23, p 1328鈥?348 CrossRef
    23. K. Kirane and S. Ghosh, A Cold Dwell Fatigue Crack Nucleation Criterion for Polycrystalline Ti-6242 Using Grain-Level Crystal Plasticity FE Model, / Int. J. Fatigue, 2008, 30, p 2127鈥?139 CrossRef
    24. M. Zhang, D.L. McDowell, and R.W. Neu, Microstructure Sensitivity of Fretting Fatigue Based on Computational Crystal Plasticity, / Tribol. Int., 2009, 42, p 1286鈥?296 CrossRef
    25. A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck, Correlation Between 2D and 3D Flow Curve Modelling of DP Steels Using a Microstructure-Based RVE Approach, / Mater. Sci. Eng. A, 2013, 560, p 129鈥?39 CrossRef
    26. J. Thomas, M. Groeber, and S. Ghosh, Image-Based Crystal Plasticity FE Framework for Microstructure Dependent Properties of Ti-6Al-4V Alloys, / Mater. Sci. Eng. A, 2012, 553, p 164鈥?75 CrossRef
    27. E.J. Shin, A. Jung, S.H. Choi, A.D. Rollett, and S.S. Park, A Theoretical Prediction of Twin Variants in Extruded AZ31 Mg Alloys Using the Microstructure Based Crystal Plasticity Finite Element Method, / Mater. Sci. Eng. A, 2012, 538, p 190鈥?01 CrossRef
    28. L. Chen, G.Q. Zhao, J.Q. Yu, and W.D. Zhang, Constitutive Analysis of Homogenized 7005 Aluminum Alloy at Evaluated Temperature for Extrusion Process, / Mater. Des., 2015, 66, p 129鈥?36 CrossRef
    29. C.J. Shi, W.M. Mao, and X.G. Chen, Evolution of Activation Eenergy During Hot Deformation of AA7150 Aluminum Alloy, / Mater. Sci. Eng. A, 2013, 571, p 83鈥?1 CrossRef
    30. W.T. Huo, L.G. Hou, H. Cui, L.Z. Zhuang, and J.S. Zhang, Fine-Grained AA 7075 Processed by Different Thermo-mechanical Processing, / Mater. Sci. Eng. A, 2014, 618, p 244鈥?53 CrossRef
    31. Y.C. Lin, L.T. Li, and Y.Q. Jiang, A Phenomenological Constitutive Model for Describing Thermo-viscoplastic Behavior of Al-Zn-Mg-Cu Alloy Under Hot Working Condition, / Exp. Mech., 2012, 52, p 993鈥?002 CrossRef
    32. Y.C. Lin, L.T. Li, Y.X. Fu, and Y.Q. Jiang, Hot Compressive Deformation Behavior of 7075 Al Alloy Under Elevated Temperature, / J. Mater. Sci., 2012, 47, p 1306鈥?318 CrossRef
    33. M.R. Rokni, A. Zarei-Hanzaki, C.A. Widener, and P. Changizian, The Strain-Compensated Constitutive Equation for High Temperature Flow Behavior of an Al-Zn-Mg-Cu Alloy, / J. Mater. Eng. Perform., 2014, 23, p 4002鈥?009 CrossRef
    34. G.Z. Quan, G.S. Li, Y. Wang, W.Q. Lv, C.T. Yu, and J. Zhou, A Characterization for the Flow Behavior of As-Extruded 7075 Aluminum Alloy by the Improved Arrhenius Model with Variable Parameters, / Mater. Res., 2013, 16, p 19鈥?7 CrossRef
    35. T.S.B. Naser and G. Krallics, Mechanical Behavior of Multiple-Forged Al 7075 Aluminum Alloy, / Acta Polytech. Hung., 2014, 11, p 103鈥?17
    36. U.M.R. Paturi, S.K.R. Narala, and R.S. Pundir, Constitutive Flow Stress Formulation, Model Validation and FE Cutting Simulation for AA7075-T6 Aluminum Alloy, / Mater. Sci. Eng. A, 2014, 605, p 176鈥?85 CrossRef
    37. M. Zhou, Y.C. Lin, J. Deng, and Y.Q. Jiang, Hot Tensile Deformation Behaviors and Constitutive Model of an Al-Zn-Mg-Cu Alloy, / Mater. Des., 2014, 59, p 141鈥?50 CrossRef
    38. D.N. Zhang, Q.Q. Shangguan, C.J. Xie, and F. Liu, A Modified Johnson-Cook Model of Dynamic Tensile Behaviors for 7075-T6 Aluminum Alloy, / J. Alloy. Compd., 2015, 619, p 186鈥?94 CrossRef
    39. A. Jenab, A.K. Taheri, and K. Jenab, The Use of ANN to Predict the Hot Deformation Behavior of AA7075 at Low Strain Rates, / J. Mater. Eng. Perform., 2013, 22, p 903鈥?10 CrossRef
    40. M.R. Selvan and S. Ramanathan, Effect of Silicon Carbide Volume Fraction on the Hot Workability of 7075 Aluminium-Based Metal-Matrix Composites, / Int. J. Adv. Manuf. Technol., 2013, 67, p 1711鈥?720 CrossRef
    41. M. Rajamuthamilselvan and S. Ramanathan, Hot Deformation Behaviour of 7075 Alloy, / J. Alloy. Compd., 2011, 509, p 948鈥?52 CrossRef
    42. A. Jenab and A.K. Taheri, Experimental Investigation of the Hot Deformation Behavior of AA7075: Development and Comparison of Flow Localization Parameter and Dynamic Material Model Processing Maps, / Int. J. Mech. Sci., 2014, 78, p 97鈥?05 CrossRef
    43. Y.C. Lin, L.T. Li, Y.C. Xia, and Y.Q. Jiang, Hot Deformation and Processing Map of a Typical Al-Zn-Mg-Cu Alloy, / J. Alloy. Compd., 2013, 550, p 438鈥?45 CrossRef
    44. Y.C. Lin, Y.Q. Jiang, X.M. Chen, D.X. Wen, and H.M. Zhou, Effect of Creep-Aging on the Precipitates of 7075 Aluminum Alloy, / Mater. Sci. Eng. A, 2013, 588, p 347鈥?56 CrossRef
    45. L.T. Li, Y.C. Lin, H.M. Zhou, Y.C. Xia, and Y.Q. Jiang, Modeling the High-Temperature Creep Behaviors of 7075 and 2124 Aluminum Alloys by Continuum Damage Mechanics Model, / Comput. Mater. Sci., 2013, 73, p 72鈥?8 CrossRef
    46. Y.C. Lin, Y.Q. Jiang, X.C. Zhang, J. Deng, and X.M. Chen, Effect of Creep-Aging Processing on Corrosion Resistance of an Al-Zn-Mg-Cu Alloy, / Mater. Des., 2014, 61, p 228鈥?38 CrossRef
    47. E.B. Marin, Sandia National Laboratories, 2006
    48. ABAQUS, Hibbit, Karlsson and Sorensen Inc., 2011
    49. D. Raabe and F. Roters, Using Texture Components in Crystal Plasticity Finite Element Simulations, / Int. J. Plast., 2004, 20, p 339鈥?61 CrossRef
    50. R. Hielscher and H. Schaeben, A Novel Pole Figure Inversion Method: Specification of the MTEX Algorithm, / J. Appl. Cryst., 2008, 41, p 1024鈥?037 CrossRef
    51. L. Li, L.M. Shen, and G. Proust, A Texture-Based Representative Volume Element Crystal Plasticity Model for Predicting Bauschinger Effect during Cyclic Loading, / Mater. Sci. Eng. A, 2014, 608, p 174鈥?83 CrossRef
    52. L.T. Li, Y.C. Lin, L. Li, and L.M. Shen, Finite Element Simulation of the Hot Deformation Behavior of AA7075 Using a Coupled Thermo-Mechanical Crystal Plasticity Constitutive Model, / Appl. Mech. Mater., 2014, 553, p 82鈥?7 CrossRef
    53. H. Mirzadeh, M.H. Parsa, and D. Ohadi, Hot Deformation Behavior of Austenitic Stainless Steel for a Wide Range of Initial Grain Size, / Mater. Sci. Eng. A, 2013, 569, p 54鈥?0 CrossRef
    54. S.V. Sajadifar, M. Ketabchi, and M. Nourani, Modeling of Mechanical Characteristics in Hot Deformation of 4130 Steel, / Steel Res. Int., 2011, 82, p 934鈥?39 CrossRef
    55. C. Maurice and J.H. Driver, High Temperature Plane Strain Compression of Cube Oriented Aluminium Crystals, / Acta Metall. Mater., 1993, 41, p 1653鈥?664 CrossRef
    56. D. Raabe, Texture Simulation for Hot Rolling of Aluminium by Use of a Taylor Model Considering Grain Interactions, / Acta Metall. Mater., 1995, 43, p 1023鈥?028 CrossRef
    57. D. Raabe, Cellular Automata in Materials Science with Particular Reference to Recrystallization Simulation, / Annu. Rev. Mater. Res., 2002, 32, p 53鈥?6 CrossRef
    58. D. Raabe and R.C. Becker, Coupling of a Crystal Plasticity Finite-Element Model with a Probabilistic Cellular Automaton for Simulating Primary Static Recrystallization in Aluminium, / Model. Simul. Mater. Sci. Eng., 2000, 8, p 445鈥?62 CrossRef
    59. D. Raabe, Z. Zhao, and W. Mao, On the Dependence of In-Grain Subdivision and Deformation Texture of Aluminum on Grain Interaction, / Acta Mater., 2002, 50, p 4379鈥?394 CrossRef
    60. D. Raabe, Z. Zhao, S.J. Park, and F. Roters, Theory of Orientation Gradients in Plastically Strained Crystals, / Acta Mater., 2002, 50, p 421鈥?40 CrossRef
    61. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications, / Acta Mater., 2010, 58, p 1152鈥?211 CrossRef
    62. H. Mirzadeh and A. Najafizadeh, Hot Deformation and Dynamic Recrystallization of 17-4 PH Stainless Steel, / ISIJ Int., 2013, 53, p 680鈥?89 CrossRef
    63. D. Samantaray, S. Mandal, C. Phaniraj, and A.K. Bhaduri, Flow Behavior and Microstructural Evolution During Hot Deformation of AISI, Type 316 L(N) Austenitic Stainless Steel, / Mater. Sci. Eng. A, 2011, 528, p 8565鈥?572 CrossRef
    64. A. Momeni, K. Dehghani, and G.R. Ebrahimi, Modeling the Initiation of Dynamic Recrystallization Using a Dynamic Recovery Model, / J. Alloy. Compd., 2011, 509, p 9387鈥?393 CrossRef
    65. J. Eickemeyer, D. Selbmann, R. Opitz, B. de Boer, B. Holzapfel, L. Schultz, and U. Miller, Nickel-Refractory Metal Substrate Tapes with High Cube Texture Stability, / Supercond. Sci. Technol., 2001, 14, p 152鈥?59 CrossRef
    66. J.H. Driver, D. Juul Jensen, and N. Hansen, Large Strain Deformation Structures in Aluminium Crystals with Rolling Texture Orientations, / Acta Metal. Mater., 1994, 42, p 3105鈥?114 CrossRef
    67. D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, and S. Zaefferer, Micromechanical and Macromechanical Effects in Grain Scale Polycrystal Plasticity Experimentation and Simulation, / Acta Mater., 2001, 49, p 3433鈥?441 CrossRef
    68. M. Sachtleber, Z. Zhao, and D. Raabe, Experimental Investigation of Plastic Grain Interaction, / Mater. Sci. Eng. A, 2002, 336, p 81鈥?7 CrossRef
    69. C. Zambaldi, F. Roters, D. Raabe, and U. Glatzel, Modeling and Experiments on the Indentation Deformation and Recrystallization of a Single-Crystal Nickel-Base Superalloy, / Mater. Sci. Eng. A, 2007, 454-455, p 433鈥?40 CrossRef
    70. Z. Zhao, M. Ramesh, and D. Raabe, Investigation of Three-Dimensional Aspects of Grain-Scale Plastic Surface Deformation of an Aluminum Oligocrystal, / Int. J. Plast., 2008, 24, p 2278鈥?297 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
Three-dimensional crystal plasticity finite element (CPFE) method is used to investigate the hot compressive deformation behaviors of 7075 aluminum alloy. Based on the grain morphology and crystallographic texture of 7075 aluminum alloy, the microstructure-based representative volume element (RVE) model was established by the pole figure inversion approach. In order to study the macroscopic stress-strain response and microstructural evolution, the CPFE simulations are performed on the established microstructure-based RVE model. It is found that the simulated stress-strain curves and deformation texture well agree with the measured results of 7075 aluminum alloy. With the increasing deformation degree, the remained initial weak Goss texture component tends to be strong and stable, which may result in the steady flow stress. The grain orientation and grain misorientation have significant effects on the deformation heterogeneity during hot compressive deformation. In the rolling-normal plane, the continuity of strain and misorientation can maintain across the low-angle grain boundaries, while the discontinuity of strain and misorientation is observed at the high-angle grain boundaries. The simulated results demonstrate that the developed CPFE model can well describe the hot compressive deformation behaviors of 7075 aluminum alloy under elevated temperatures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700