用户名: 密码: 验证码:
Maintenance of the activity of mono-dispersed Au and Ag nano-particles embedded in agar gel for ion-sensing and antimicrobial applications
详细信息    查看全文
  • 作者:Yijuan Long (1)
    Yi Wang (1)
    Yue Liu (1)
    Qiaoling Zeng (2)
    Yuanfang Li (1)

    1. Key Laboratory on Luminescence and Real-Time Analysis
    ; Ministry of Education ; College of Chemistry and Chemical Engineering ; Southwest University ; Chongqing ; 400715 ; China
    2. College of Pharmaceutical Sciences
    ; Southwest University ; Chongqing ; 400715 ; China
  • 关键词:nanoparticles ; composite materials ; optical sensors
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:58
  • 期:4
  • 页码:666-672
  • 全文大小:869 KB
  • 参考文献:1. Masala, O, Seshadri, R (2004) Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res 34: pp. 41-81 CrossRef
    2. Cushing, BL, Kolesnichenko, VL, O鈥機onnor, CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104: pp. 3893-3946 CrossRef
    3. Ennas, G, Falqui, A, Marras, S, Sangregorio, C, Marongiu, G (2004) Influence of metal content on size, dispersion, and magnetic properties of iron-cobalt alloy nanoparticles embedded in silica matrix. Chem Mater 16: pp. 5659-5963 CrossRef
    4. Zhang, X, Servos, MR, Liu, JW (2012) Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. J Am Chem Soc 134: pp. 7266-7269 CrossRef
    5. Guo, Y, Hu, JS, Liang, HP, Wan, LJ, Bai, CL (2003) Highly dispersed metal nanoparticles in porous anodic alumina films prepared by a breathing process of polyacrylamide hydrogel. Chem Mater 15: pp. 4332-4336 CrossRef
    6. Boualleg, M, Basset, JM, Candy, JP, Delichere, P, Pelzer, K, Veyre, L, Thieuleux, C (2009) Regularly distributed and fully accessible Pt nanoparticles in silica pore channels via the controlled growth of a mesostructured matrix around Pt colloids. Chem Mater 21: pp. 775-777 CrossRef
    7. Cannas, C, Musinu, A, Peddis, D, Piccaluga, G (2006) Synthesis and characterization of CoFe2O4 nanoparticles dispersed in a silica matrix by a sol-gel autocombustion method. Chem Mater 18: pp. 3835-3842 CrossRef
    8. Belova, V, Mohwald, H, Shchukin, DG (2009) Ultrasonic intercalation of gold nanoparticles into a clay matrix in the presence of surface-active materials. Part II: negative sodium dodecylsulfate and positive cetylt-rimethylammonium bromide. J Phys Chem C 113: pp. 6751-6760 CrossRef
    9. Belova, V, Andreeva, DV, Mohwald, H, Shchukin, DG (2009) Ultrasonic intercalation of gold nanoparticles into clay matrix in the presence of surface-active materials. Part I: neutral polyethylene glycol. J Phys Chem C 113: pp. 5381-5389 CrossRef
    10. Shishino, Y, Yonezawa, T, Udagawa, S, Hase, K, Nishihara, H (2011) Preparation of optical resins containing dispersed gold nanoparticles by the matrix sputtering method. Angew Chem Int Ed 3: pp. 703-705 CrossRef
    11. Mejia, ML, Agapiou, K, Yang, XP, Holliday, BJ (2009) Seeded growth of CdS nanoparticles within a conducting metallopolymer matrix. J Am Chem Soc 131: pp. 18196-18197 CrossRef
    12. Akamatsu, K, Shinkai, H, Ikeda, S, Adachi, S, Nawafune, H, Tomita, S (2005) Controlling interparticle spacing among metal nanoparticles through metal-catalyzed decomposition of surrounding polymer matrix. J Am Chem Soc 127: pp. 7980-7981 CrossRef
    13. Cai, J, Kimura, S, Wada, M, Kuga, S (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10: pp. 87-94 CrossRef
    14. Kuang, M, Wang, D, M枚hwald, H (2006) Fabrication of Au@CaCO3 nanoparticles by in situ mineralization in hydrogel microspheres. Chem Mater 18: pp. 1073-1075 CrossRef
    15. Masuda, Y, Yamagishi, M, Seo, WS, Koumoto, K (2008) Photoluminescence from ZnO nanoparticles embedded in an amorphous matrix. Cryst Growth Des 8: pp. 1503-1508 CrossRef
    16. Dawn, A, Shiraki, T, Ichikawa, H, Takada, A, Takahashi, Y, Tsuchiya, Y, Le, TNL, Shinkai, S (2012) Stereochemistry-dependent, mechanoresponsive supramolecular host assemblies for fullerenes: a guest-induced enhancement of thixotropy. J Am Chem Soc 134: pp. 2161-2171 CrossRef
    17. Praharaj, S, Nath, S, Ghosh, SK, Kundu, S, Pal, T (2004) Immobilization and recovery of Au nanoparticles from anion exchange resin: resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol. Langmuir 20: pp. 9889-9892 CrossRef
    18. Bai, S, Wu, C, Gawlitza, K, Klitzing, RV, Ansorge-Schumacher, MB, Wang, D (2010) Using hydrogel microparticles to transfer hydrophilic nanoparticles and enzymes to organic media via stepwise solvent exchange. Langmuir 26: pp. 12980-12987 CrossRef
    19. Sakamoto, M, Tachikawa, T, Fujitsuka, M, Majima, T (2008) Three-dimensional writing of copper nanoparticles in a polymer matrix with two-color laser beams. Chem Mater 20: pp. 2060-2062 CrossRef
    20. Corbierre, MK, Cameron, NS, Sutton, M, Mochrie, SGJ, Lurio, LB, Ruhm, A, Lennox, RB (2001) Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. J Am Chem Soc 123: pp. 10411-10412 CrossRef
    21. Parlak, O, Demir, MM (2011) Toward transparent nanocomposites based on polystyrene matrix and pmma-grafted CeO2 nanoparticles. ACS Appl Mater Interfaces 3: pp. 4306-4314 CrossRef
    22. Senesi, AJ, Rozkiewicz, DI, Reinhoudt, DN, Mirkin, CA (2009) Agarose-assisted dip-pen nanolithography of oligonucleotides and proteins. ACS Nano 3: pp. 2394-2402 CrossRef
    23. Drisko, GL, Wang, X, Caruso, RA (2011) Strong silica monoliths with large mesopores prepared using agarose gel templates. Langmuir 27: pp. 2124-2127 CrossRef
    24. Chv谩ez, FV, Persson, E, Halle, B (2006) Internal water molecules and magnetic relaxation in agarose gels. J Am Chem Soc 128: pp. 4902-4910 CrossRef
    25. Zhou, J, Zhou, M, Caruso, RA (2006) Agarose template for the fabrication of macroporous metal oxide structures. Langmuir 22: pp. 3332-3336 CrossRef
    26. Liu, Y, Ling, J, Huang, CZ (2011) Individually color-coded plasmonic nanoparticles for RGB analysis. Chem Commun 47: pp. 8121-8123 CrossRef
    27. Yguerabide, J, Yguerabide, EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal Biochem 262: pp. 137-156 CrossRef
    28. Tao, A, Sinsermsuksakul, P, Yang, P (2006) Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed 28: pp. 4597-4601 CrossRef
    29. Xiao, L, Wei, L, He, Y, Yeung, ES (2010) Single molecule biosensing using color coded plasmon resonant metal nanoparticles. Anal Chem 82: pp. 6308-6314 CrossRef
    30. Wang, H, Wang, YX, Jin, JY, Yang, RH (2008) Gold nanoparticle-based colorimetric and 鈥渢urn-on鈥?fluorescent probe for mercury(II) ions in aqueous solution. Anal Chem 80: pp. 9021-9028 CrossRef
    31. Daniel, M, Astruc, D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104: pp. 293-346 CrossRef
    32. Pal, S, Tak, YK, Song, JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73: pp. 1712-1720 CrossRef
    33. Morones, JR, Elechiguerra, JL, Camacho, A, Holt, K, Kouri, JB, Ram铆rez, JT, Yacaman, MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16: pp. 2346-2353 CrossRef
    34. Long, YJ, Li, YF, Liu, Y, Zheng, JJ, Tang, J, Huang, CZ (2011) Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun 47: pp. 11939-11941 CrossRef
    35. Kim, JS, Kuk, E, Yu, KN, Kim, JH, Park, SJ, Lee, HJ, Kim, SH, Park, YK, Park, YH, Hwang, CY, Kim, YK, Lee, YS, Jeong, DH, Cho, MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3: pp. 95-101 CrossRef
    36. Joen, HJ, Yi, SC, Oh, SG (2003) Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method. Biomaterials 24: pp. 4921-4928 CrossRef
    37. Su, HL, Chou, CC, Huang, DJ, Lin, SH, Pao, IC, Lin, JH (2009) The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30: pp. 5979-5987 CrossRef
    38. Sondi, I, Salopek-Sondi, B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275: pp. 177-182 CrossRef
    39. Su, KH, Wei, QH, Zhang, X, Mock, JJ, Simth, DR, Schultz, S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3: pp. 1087-1090 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
Composite materials were synthesized by encapsulating Au and Ag nanoparticles in an agar gel matrix. These metallic nano-particles were found to be separately stored, so their optical, catalytic, and antibacterial properties were retained both in the composite gel and a composite membrane. The composite gels were stable under hard external conditions. Based on this, a sensor for the detection of Hg2+ was developed using the Au nanoparticle/agar composite gel. Antibacterial materials were achieved using the Ag nanoparticle/agar composite gel and composite membrane. These two Ag nanoparticle-based materials showed good antibacterial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700