用户名: 密码: 验证码:
Green synthesis of MnO x nanostructures and studies of their supercapacitor performance
详细信息    查看全文
  • 作者:Wei Du (1) (2)
    Xiaoqian Xu (1)
    Di Zhang (1)
    Qingyi Lu (1)
    Feng Gao (2)

    1. State Key Laboratory of Coordination Chemistry
    ; Nanjing National Laboratory of Microstructures ; Coordination Chemistry Institute ; School of Chemistry and Chemical Engineering ; Nanjing University ; Nanjing ; 210093 ; China
    2. Department of Materials Science and Engineering
    ; Nanjing University ; Nanjing ; 210093 ; China
  • 关键词:MnO x nanostructures ; green synthesis ; supercapacitor
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:58
  • 期:4
  • 页码:627-633
  • 全文大小:4,846 KB
  • 参考文献:1. Yang, ZG, Zhang, JL, Kintner-Meyer, MCW, Lu, XC, Choi, D, Lemmon, JP, Liu, J (2011) Electrochemical energy storage for green grid. Chem Rev 111: pp. 3577-3613 CrossRef
    2. Wagner, FT, Lakshmanan, B, Mathias, MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1: pp. 2204-2219 CrossRef
    3. Miller, JR, Simon, P (2008) Electrochemical capacitors for energy management. Science 321: pp. 651-652 CrossRef
    4. Chen, LF, Huang, ZH, Liang, HW, Gao, HL, Yu, SH (2014) Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24: pp. 5104-5111 CrossRef
    5. Chen, LF, Zhang, XD, Liang, HW, Kong, MG, Guan, QF, Chen, P, Wu, ZY, Yu, SH (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6: pp. 7092-7102 CrossRef
    6. Chen, LF, Huang, ZH, Liang, HW, Yao, WT, Yu, ZY, Yu, SH (2013) Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ Sci 6: pp. 3331-3338 CrossRef
    7. Kaempgen, M, Chan, CK, Ma, J, Cui, Y, Gruner, G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9: pp. 1872-1876 CrossRef
    8. Zhang, LL, Zhou, R, Zhao, XS (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20: pp. 5983-5992 CrossRef
    9. Wang, YG, Li, HQ, Xia, YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18: pp. 2619-2623 CrossRef
    10. Sivakkumar, SR, Ko, JM, Kim, DY, Kim, BC, Wallace, GG (2007) Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochim Acta 52: pp. 7377-7385 CrossRef
    11. Luo, JY, Cheng, L, Xia, YY (2007) LiMn2O4 hollow nanosphere electrode material with excellent cycling reversibility and rate capability. Electrochem Commun 9: pp. 1404-1409 CrossRef
    12. Lee, SW, Kim, J, Chen, S, Hammond, PT, Yang, SH (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4: pp. 3889-3896 CrossRef
    13. Chen, PC, Shen, GZ, Shi, Y, Chen, HT, Zhou, CW (2010) Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 4: pp. 4403-4411 CrossRef
    14. Mao, L, Zhang, K, Chan, HSO, Wu, JS (2012) Nanostructured MnO2/graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition. J Mater Chem 22: pp. 1845-1851 CrossRef
    15. Yan, J, Fan, ZJ, Wei, T, Qian, WZ, Zhang, ML, Wei, F (2010) Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48: pp. 3825-3833 CrossRef
    16. Lei, ZB, Shi, FH, Lu, L (2012) Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl Mater Interfaces 4: pp. 1058-1064 CrossRef
    17. Zhang, X, Ji, LY, Zhang, SC, Yang, WS (2007) Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. J Power Sources 173: pp. 1017-1023 CrossRef
    18. Liu, R, Lee, SB (2008) MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J Am Chem Soc 130: pp. 2942-2943 CrossRef
    19. Liu, R, Duay, J, Lee, SB (2010) Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 4: pp. 4299-4307 CrossRef
    20. Yang, DF (2012) Pulsed laser deposition of cobalt-doped manganese oxide thin films for supercapacitor applications. J Power Sources 198: pp. 416-422 CrossRef
    21. Yang, DF (2013) Pulsed laser deposition of vanadium-doped manganese oxide thin films for supercapacitor applications. J Power Sources 228: pp. 89-96 CrossRef
    22. Reddy, ALM, Shaijumon, MM, Gowda, SR, Ajayan, PM (2010) Multi-segmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J Phys Chem C 114: pp. 658-663 CrossRef
    23. Hou, Y, Cheng, YW, Hobson, T, Liu, J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10: pp. 2727-2733 CrossRef
    24. Bao, LH, Zang, JF, Li, XD (2011) Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance super-capacitor electrodes. Nano Lett 11: pp. 1215-1220 CrossRef
    25. Fischer, AE, Pettigrew, KA, Rolison, DR, Stroud, RM, Long, JW (2007) Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett 7: pp. 281-286 CrossRef
    26. Jiang, J, Li, YY, Liu, JP, Huang, XT, Yuan, CZ, Lou, XW (2012) Recent advances in metal oxide-based electrode architecture design for electro-chemical energy storage. Adv Mater 24: pp. 5166-5180 CrossRef
    27. Fei, JB, Cui, Y, Yan, XH, Qi, W, Yang, Y, Wang, KW, He, Q, Li, JB (2008) Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv Mater 20: pp. 452-456 CrossRef
    28. Li, ZQ, Ding, Y, Xiong, YJ, Yang, Q, Xie, Y (2005) One-step solution-based catalytic route to fabricate novel 伪-MnO2 hierarchical structures on a large scale. Chem Commun. pp. 918-920
    29. Yu, P, Zhang, X, Wang, DL, Wang, L, Ma, YW (2009) Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Cryst Growth Des 9: pp. 528-533 CrossRef
    30. Duay, J, Sherrill, SA, Gui, Z, Gillette, E, Lee, SB (2013) Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano 7: pp. 1200-1214 CrossRef
    31. Komaba, S, Tsuchikawa, T, Ogata, A, Yabuuchi, N, Nakagawa, D, Tomita, M (2012) Nano-structured birnessite prepared by electrochemical activation of manganese(III)-based oxides for aqueous supercapacitors. Electrochim Acta 59: pp. 455-463 CrossRef
    32. Tian, N, Zhou, ZY, Sun, SG, Ding, Y, Wang, ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high rlectro-oxidation vctivity. Science 316: pp. 732-735 CrossRef
    33. Yan, J, Fan, Z, Wei, T, Cheng, J, Shao, B, Wang, K, Song, L, Zhang, M (2009) Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J Power Sources 194: pp. 1202-1207 CrossRef
    34. Subramanian, V, Zhu, HW, Wei, BQ (2006) Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem Commun 8: pp. 827-832 CrossRef
    35. Hu, CC, Chang, KH, Hsu, TY (2008) The synergistic influences of OH鈭?concentration and electrolyte conductivity on the redox behavior of Ni(OH)2/NiOOH. J Electrochem Soc 155: pp. F196-F200 CrossRef
    36. Jiang, H, Zhao, T, Ma, J, Yan, CY, Li, CZ (2011) Ultrafine manganese dioxide nanowire network for high-performance super capacitors. Chem Commun 47: pp. 1264-1266 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
Manganese oxides with different crystalline phases and morphologies were prepared by calcining MnCO3 precursors. The MnCO3 precursors with different morphologies were obtained through a green route under hydrothermal conditions with orange pericarp extracting solution as the reducing agent. By calcining the precursor under different temperatures and atmospheres, MnO x with different stoichiometric ratios (i.e., MnO, MnO2, Mn2O3, and Mn3O4) can be obtained. Electrochemical studies reveal that among these manganese oxides, MnO or MnO2 are more suitable as supercapacitor working electrodes than Mn2O3 or Mn3O4. They exhibit high specific capacitance up to 296.6 F/g and also possess good cycling stability, which make them potential electrode materials for supercapacitors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700