用户名: 密码: 验证码:
Nanopore-based sensing and analysis: beyond the resistive-pulse method
详细信息    查看全文
  • 作者:Yanan Jiang (1)
    Wei Guo (2)

    1. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education
    ; School of Chemistry and Environment ; Beihang University ; Beijing ; 100191 ; China
    2. Laboratory of Bio-Inspired Smart Interface Science
    ; Technical Institute of Physics and Chemistry ; Chinese Academy of Sciences ; Beijing ; 100190 ; China
  • 关键词:Nanopore ; Sensing ; Stimuli response ; Steady state ; Transient signal
  • 刊名:Chinese Science Bulletin
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:60
  • 期:5
  • 页码:491-502
  • 全文大小:3,491 KB
  • 参考文献:1. Branton, D, Deamer, DW, Marziali, A (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26: pp. 1146-1153 CrossRef
    2. Howorka, S, Siwy, Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38: pp. 2360-2384 CrossRef
    3. Venkatesan, BM, Bashir, R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6: pp. 615-624 CrossRef
    4. Huang, S (2014) Nanopore-based sensing devices and applications to genome sequencing: a brief history and the missing pieces. Chin Sci Bull 59: pp. 4918-4928 CrossRef
    5. Martin, CR, Siwy, ZS (2007) Learning nature鈥檚 way: biosensing with synthetic nanopores. Science 317: pp. 331-332 CrossRef
    6. Gao, R, Ying, YL, Yan, BY (2014) An integrated current measurement system for nanopore analysis. Chin Sci Bull 59: pp. 4968-4973 CrossRef
    7. Guo, W, Tian, Y, Jiang, L (2013) Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. Acc Chem Res 46: pp. 2834-2846 CrossRef
    8. Hou, X, Guo, W, Jiang, L (2011) Biomimetic smart nanopores and nanochannels. Chem Soc Rev 40: pp. 2385-2401 CrossRef
    9. Zhang, H, Tian, Y, Jiang, L (2013) From symmetric to asymmetric design of bio-inspired smart single nanochannels. Chem Commun 49: pp. 10048-10063 CrossRef
    10. Zhang, S, Sun, T, Wang, E (2014) Investigation of self-assembled protein dimers through an artificial ion channel for DNA sensing. Chin Sci Bull 59: pp. 4946-4952 CrossRef
    11. Jiang, Y, Liu, N, Guo, W (2012) Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. J Am Chem Soc 134: pp. 15395-15401 CrossRef
    12. Liu, N, Jiang, Y, Zhou, Y (2013) Two-way nanopore sensing of sequence-specific oligonucleotides and small-molecule targets in complex matrices using integrated DNA supersandwich structures. Angew Chem Int Ed 52: pp. 2007-2011 CrossRef
    13. Scott, ER, White, HS, Phipps, JB (1991) Scanning electrochemical microscopy of a porous membrane. J Mem Sci 58: pp. 71-87 CrossRef
    14. Morris, CA, Chen, CC, Baker, LA (2012) Transport of redox probes through single pores measured by scanning electrochemical鈥搒canning ion conductance microscopy (SECM鈥揝ICM). Analyst 137: pp. 2933-2938 CrossRef
    15. Smeets, R, Keyser, UF, Wu, MY (2006) Nanobubbles in solid-state nanopores. Phys Rev Lett 97: pp. 088101 CrossRef
    16. Guo, W, Cao, L, Xia, J (2010) Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source. Adv Funct Mater 20: pp. 1339-1344 CrossRef
    17. Kasianowicz, JJ, Brandin, E, Branton, D (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93: pp. 13770-13773 CrossRef
    18. Li, J, Stein, D, McMullan, C (2001) Ion-beam sculpting at nanometre length scales. Nature 412: pp. 166-169 CrossRef
    19. Yusko, EC, Johnson, JM, Majd, S (2011) Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat Nanotechnol 6: pp. 253-260 CrossRef
    20. Bayley, H, Martin, CR (2000) Resistive-pulse sensing鈥攆rom microbes to molecules. Chem Rev 100: pp. 2575-2594 CrossRef
    21. Piruska, A, Gong, M, Sweedler, JV (2010) Nanofluidics in chemical analysis. Chem Soc Rev 39: pp. 1060-1072 CrossRef
    22. Ying, YL, Cao, C, Long, YT (2014) Single molecule analysis by biological nanopore sensors. Analyst 139: pp. 3826-3835 CrossRef
    23. Makra, I, Gyurcsanyi, RE (2014) Electrochemical sensing with nanopores: a mini review. Electrochem Commun 43: pp. 55-59 CrossRef
    24. Wang, L, Guo, W, Xie, Y (2009) Nanofluidic diode generated by pH gradient inside track-etched conical nanopore. Radiat Meas 44: pp. 1119-1122 CrossRef
    25. Xia, H, Xia, F, Tang, Y (2011) Tuning surface wettability through supramolecular interactions. Soft Matter 7: pp. 1638-1640 CrossRef
    26. Chen, Q, Meng, L, Li, Q (2011) Water transport and purification in nanochannels controlled by asymmetric wettability. Small 7: pp. 2225-2231 CrossRef
    27. Cao, L, Guo, W, Wang, Y (2012) Concentration-gradient-dependent ion current rectification in charged conical nanopores. Langmuir 28: pp. 2194-2199 CrossRef
    28. Zhou, Y, Guo, W, Jiang, L (2014) Water wettability in nanoconfined environment. Sci China-Phys Mech Astron 57: pp. 836-843 CrossRef
    29. Zhou, Y, Guo, W, Cheng, J (2012) High-temperature gating of solid-state nanopores with thermo-responsive macromolecular nanoactuators in ionic liquids. Adv Mater 24: pp. 962-967 CrossRef
    30. Zhang, M, Hou, X, Wang, J (2012) Light and pH cooperative nanofluidic diode using a spiropyran-functionalized single nanochannel. Adv Mater 24: pp. 2424-2428 CrossRef
    31. Tian, Y, Zhang, Z, Wen, L (2013) A biomimetic mercury(II)-gated single nanochannel. Chem Commun 49: pp. 10679-10681 CrossRef
    32. Guo, W, Cheng, C, Wu, YZ (2013) Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater 25: pp. 6064-6068 CrossRef
    33. Cao, L, Guo, W, Ma, W (2011) Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition. Energ Environ Sci 4: pp. 2259-2266 CrossRef
    34. Gao, J, Cheng, C, Wu, Y (2014) High-performance ionic diode membrane for salinity gradient power generation. J Am Chem Soc 136: pp. 12265-12272 CrossRef
    35. Xia, F, Guo, W, Mao, Y (2008) Gating of single synthetic nanopores by proton-driven DNA molecular motors. J Am Chem Soc 130: pp. 8345-8350 CrossRef
    36. Hou, X, Guo, W, Xia, F (2009) A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J Am Chem Soc 131: pp. 7800-7805 CrossRef
    37. Wen, L, Hou, X, Tian, Y (2010) Bioinspired smart gating of nanochannels toward photoelectric-conversion systems. Adv Mater 22: pp. 1021-1024 CrossRef
    38. Ali, M, Nasir, S, Quoc, HN (2011) Metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron-terpyridine complexes. J Am Chem Soc 133: pp. 17307-17314 CrossRef
    39. Vlassiouk, I, Park, CD, Vail, SA (2006) Control of nanopore wetting by a photochromic spiropyran: a light-controlled valve and electrical switch. Nano Lett 6: pp. 1013-1017 CrossRef
    40. Guo, W, Xia, H, Xia, F (2010) Current rectification in temperature-responsive single nanopores. ChemPhysChem 11: pp. 859-864 CrossRef
    41. Wen, L, Hou, X, Tian, Y (2010) Bio-inspired photoelectric conversion based on smart-gating nanochannels. Adv Funct Mater 20: pp. 2636-2642 CrossRef
    42. Hou, X, Yang, F, Li, L (2010) A biomimetic asymmetric responsive single nanochannel. J Am Chem Soc 132: pp. 11736-11742 CrossRef
    43. Guo, W, Xia, H, Cao, L (2010) Integrating ionic gate and rectifier within one solid-state nanopore via modification with dual-responsive copolymer brushes. Adv Funct Mater 20: pp. 3561-3567 CrossRef
    44. Ali, M, Nasir, S, Ahmed, I (2013) Tuning nanopore surface polarity and rectification properties through enzymatic hydrolysis inside nanoconfined geometries. Chem Commun 49: pp. 8770-8772 CrossRef
    45. Szczepanski, V, Vlassiouk, I, Smirnov, S (2006) Stability of silane modifiers on alumina nanoporous membranes. J Mem Sci 281: pp. 587-591 CrossRef
    46. Guo, W, Xue, J, Wang, L (2008) Controllable etching of heavy ion tracks with organic solvent addition in etchant. Nucl Instrum Method B 266: pp. 3095-3099 CrossRef
    47. Gao, J, Guo, W, Geng, H (2011) Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication. Nano Res 5: pp. 99-108 CrossRef
    48. Jiang, Y, Gao, J, Guo, W (2014) Mechanical exfoliation of track-etched two-dimensional layered materials for the fabrication of ultrathin nanopores. Chem Commun 50: pp. 14149-14152 CrossRef
    49. Zhang, B, Zhang, YH, White, HS (2004) The nanopore electrode. Anal Chem 76: pp. 6229-6238 CrossRef
    50. Wang, GL, Zhang, B, Wayment, JR (2006) Electrostatic-gated transport in chemically modified glass nanopore electrodes. J Am Chem Soc 128: pp. 7679-7686 CrossRef
    51. Li, Q, Xie, S, Liang, Z (2009) Fast ion-transfer processes at nanoscopic liquid/liquid interfaces. Angew Chem Int Ed 48: pp. 8010-8013 CrossRef
    52. Lan, W, Holden, DA, Zhang, B (2011) Nanoparticle transport in conical-shaped nanopores. Anal Chem 83: pp. 3840-3847 CrossRef
    53. German, SR, Luo, L, White, HS (2013) Controlling nanoparticle dynamics in conical nanopores. J Phys Chem C 117: pp. 703-711 CrossRef
    54. Wang, G, Bohaty, AK, Zharov, I (2006) Photon gated transport at the glass nanopore electrode. J Am Chem Soc 128: pp. 13553-13558 CrossRef
    55. Morris, CA, Friedman, AK, Baker, LA (2010) Applications of nanopipettes in the analytical sciences. Analyst 135: pp. 2190-2202 CrossRef
    56. Zhou, Y, Chen, CC, Weber, AE (2014) Potentiometric-scanning ion conductance microscopy. Langmuir 30: pp. 5669-5675 CrossRef
    57. Momotenko, D, Cortes-Salazar, F, Lesch, A (2011) Microfluidic push-pull probe for scanning electrochemical microscopy. Anal Chem 83: pp. 5275-5282 CrossRef
    58. Cortes-Salazar, F, Momotenko, D, Girault, HH (2011) Seeing big with scanning electrochemical microscopy. Anal Chem 83: pp. 1493-1499 CrossRef
    59. Chen, C, Zhou, Y, Baker, LA (2012) Scanning ion conductance microscopy. Annu Rev Anal Chem 5: pp. 207-228 CrossRef
    60. Ervin, EN, White, HS, Baker, LA (2005) Alternating current impedance imaging of membrane pores using scanning electrochemical microscopy. Anal Chem 77: pp. 5564-5569 CrossRef
    61. Ervin, EN, White, HS, Baker, LA (2006) Alternating current impedance imaging of high-resistance membrane pores using a scanning electrochemical microscope. Application of membrane electrical shunts to increase measurement sensitivity and image contrast. Anal Chem 78: pp. 6535-6541 CrossRef
    62. Lee, S, Zhang, YH, White, HS (2004) Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy. Anal Chem 76: pp. 6108-6115 CrossRef
    63. Chen, C, Derylo, MA, Baker, LA (2009) Measurement of ion currents through porous membranes with scanning ion conductance microscopy. Anal Chem 81: pp. 4742-4751 CrossRef
    64. Chen, P, Mitsui, T, Farmer, DB (2004) Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett 4: pp. 1333-1337 CrossRef
    65. Wei, R, Pedone, D, Zurner, A (2010) Fabrication of metallized nanopores in silicon nitride membranes for single-molecule sensing. Small 6: pp. 1406-1414 CrossRef
    66. Tabard-Cossa, V, Trivedi, D, Wiggin, M (2007) Noise analysis and reduction in solid-state nanopores. Nanotechnology 18: pp. 305505 CrossRef
    67. Powell, MR, Martens, C, Siwy, ZS (2010) Asymmetric properties of ion current 1/f noise in conically shaped nanopores. Chem Phys 375: pp. 529-535 CrossRef
    68. Powell, MR, Sa, N, Davenport, M (2011) Noise properties of rectifying nanopores. J Phys Chem C 115: pp. 8775-8783 CrossRef
    69. Pedone, D, Firnkes, M, Rant, U (2009) Data analysis of translocation events in nanopore experiments. Anal Chem 81: pp. 9689-9694 CrossRef
    70. Smeets, RM, Keyser, UF, Dekker, NH (2008) Noise in solid-state nanopores. Proc Natl Acad Sci USA 105: pp. 417-421 CrossRef
    71. Wang, D, Kvetny, M, Liu, J (2012) Transmembrane potential across single conical nanopores and resulting memristive and memcapacitive ion transport. J Am Chem Soc 134: pp. 3651-3654 CrossRef
    72. Feng, J, Liu, J, Wu, B (2010) Impedance characteristics of amine modified single glass nanopores. Anal Chem 82: pp. 4520-4528 CrossRef
    73. Guerrette, JP, Zhang, B (2010) Scan-rate-dependent current rectification of cone-shaped silica nanopores in quartz nanopipettes. J Am Chem Soc 132: pp. 17088-17091 CrossRef
    74. Yokota, K, Tsutsui, M, Taniguchi, M (2014) Electrode-embedded nanopores for label-free single-molecule sequencing by electric currents. RSC Adv 4: pp. 15886-15899 CrossRef
    75. Howorka, S, Siwy, ZS (2012) Nanopores as protein sensors. Nat Biotechnol 30: pp. 506-507 CrossRef
    76. Rosen, CB, Rodriguez-Larrea, D, Bayley, H (2014) Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat Biotechnol 32: pp. 179-181 CrossRef
    77. Laszlo, AH, Derrington, IM, Ross, BC (2014) Decoding long nanopore sequencing reads of natural DNA. Nat Biotechnol 32: pp. 829-833 CrossRef
    78. Manrao, EA, Derrington, IM, Laszlo, AH (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 30: pp. 349-353 CrossRef
    79. Zhao, Q, Wang, Y, Dong, J (2012) Nanopore-based DNA analysis via graphene electrodes. J Nanomater 2012: pp. 318950
    80. Zwolak, M, Ventra, M (2005) Electronic signature of DNA nucleotides via transverse transport. Nano Lett 5: pp. 421-424 CrossRef
    81. Gierhart, BC, Flowitt, DG, Chen, SJ (2008) Nanopore with transverse nanoelectrodes for electrical characterization and sequencing of DNA. Sens Actuators B 132: pp. 593-600 CrossRef
    82. Tsutsui, M, Taniguchi, M, Yokota, K (2010) Identifying single nucleotides by tunnelling current. Nat Nanotechnol 5: pp. 286-290 CrossRef
    83. Ivanov, AP, Instuli, E, McGilvery, CM (2011) DNA tunneling detector embedded in a nanopore. Nano Lett 11: pp. 279-285 CrossRef
    84. Huang, S, He, J, Chang, S (2010) Identifying single bases in a DNA oligomer with electron tunnelling. Nat Nanotechnol 5: pp. 868-873 CrossRef
    85. Postma, HW (2010) Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett 10: pp. 420-425 CrossRef
    86. Min, SK, Kim, WY, Cho, Y (2011) Fast DNA sequencing with a graphene-based nanochannel device. Nat Nanotechnol 6: pp. 162-165 CrossRef
    87. O鈥橦ern, SC, Boutilier, MSH, Idrobo, JC (2014) Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett 14: pp. 1234-1241 CrossRef
    88. Garaj, S, Hubbard, W, Reina, A (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467: pp. 190-193 CrossRef
    89. Merchant, CA, Healy, K, Wanunu, M (2010) DNA translocation through graphene nanopores. Nano Lett 10: pp. 2915-2921 CrossRef
    90. Schneider, GF, Kowalczyk, SW, Calado, VE (2010) DNA translocation through graphene nanopores. Nano Lett 10: pp. 3163-3167 CrossRef
    91. Siwy, ZS, Davenport, M (2010) Making nanopores from nanotubes. Nat Nanotechnol 5: pp. 174-175 CrossRef
    92. Liu, H, He, J, Tang, J (2009) Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327: pp. 64-67 CrossRef
    93. Liu, L, Yang, C, Zhao, K (2013) Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat Commun 4: pp. 2989
    94. Wei, RS, Gatterdam, V, Wieneke, R (2012) Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat Nanotechnol 7: pp. 257-263 CrossRef
    95. Dekker, C (2007) Solid-state nanopores. Nat Nanotechnol 2: pp. 209-215 CrossRef
    96. Hou, X, Dong, H, Zhu, D (2010) Fabrication of stable single nanochannels with controllable ionic rectification. Small 6: pp. 361-365 CrossRef
    97. Guo, W, Jiang, L (2014) Two-dimensional ion channel based soft-matter piezoelectricity. Sci China Mater 57: pp. 2-6 CrossRef
    98. Xia, F, Jiang, L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20: pp. 2842-2858 CrossRef
    99. Su, B, Guo, W, Jiang, L (2014) Learning from nature: binary cooperative complementary nanomaterials. Small.
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
Solid-state nanopores are generally considered as an indispensable element in the research field of fundamental ion transport and molecular sensing. The improvement in fabrication and chemical modification of the solid-state nanopores remains increasingly updated. During the last decades, numerous works have been reported on the nanopore-based sensing applications. More and more new analytical methods using nanopore-based devices are emerging. In this review, we highlight the recent progress on the analytical methods for the interdisciplinary and fast-growing area of nanopore research. According to the different types of the electrical readout, whether it is steady-state ionic current or transient current fluctuation, the nanopore-based sensing and analysis can be generally divided into two categories. For the first type, the electrical readout shows a stable blockade or reopening of the nanopore conductance in the presence of target analytes, termed steady-state analysis, including the conductance change, electrochemical analysis, and two-dimensional scanning and imaging. The other type is based on the transient fluctuation in the transmembrane ionic current, termed transient-state analysis, including the noise analysis, transient ion transport, and transverse tunneling current. The investigation of solid-state nanopores for chemical sensing is just in its infancy. For further research work, not only new nanopore materials and chemical modifications are needed, but also other non-electric-based sensing techniques should be developed. We will focus our future research in the framework of bio-inspired, smart, multiscale interfacial materials and extend the spirit of binary cooperative complementary nanomaterials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700