用户名: 密码: 验证码:
Analysis of codon usage bias of mitochondrial genome in Bombyx mori and its relation to evolution
详细信息    查看全文
  • 作者:Lei Wei (1)
    Jian He (2)
    Xian Jia (1)
    Qi Qi (1)
    Zhisheng Liang (1)
    Hao Zheng (1)
    Yao Ping (1)
    Shuyu Liu (2)
    Jingchen Sun (1)

    1. Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center
    ; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding ; College of Animal Science ; South China Agricultural University ; Guangzhou ; 510642 ; China
    2. Guangzhou East Campus Lab Center
    ; Sun Yat-sen University ; Guangzhou ; 510006 ; China
  • 关键词:Bombyx mori ; Synonymous codon usage bias ; Genomic DNA ; Mitochondrial DNA ; Evolution
  • 刊名:BMC Evolutionary Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:919 KB
  • 参考文献:1. Sun, Z, Wan, D, Murphy, RW, Ma, L, Zhang, X, Huang, D (2009) Comparison of base composition and codon usage in insect mitochondrial genomes. Genes Genom 31: pp. 65-71 CrossRef
    2. Sharp, MP, Li, W (1986) Codon usage in regulatory genes in Escherichia coli does not reflect selection for rare codons. Nucleic Acids Research 14: pp. 7737-7749 CrossRef
    3. Bulmer, M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129: pp. 897-907
    4. Peden, JF (1999) Analysis of Codon Usage. PhD thesis. Nottingham University, Department of Genetics, 釁
    5. Francino, HP, Ochman, H (1999) Isochores result from mutation not selection. Nature 400: pp. 30-31 CrossRef
    6. Powell, JR, Moriyama, EN (1997) Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci U S A 94: pp. 7784-7790 CrossRef
    7. Wang, HC, Hickey, DA (2007) Rapid divergence of codon usage patterns within the rice genome. BMC Evol Biol 7: pp. S6 CrossRef
    8. Ingvarsson, PK (2007) Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula. Mol Biol Evol 24: pp. 836-844 CrossRef
    9. Zhu, B, Liu, Q, Dai, L, Wang, L, Sun, Y, Lin, K, Wei, G, Liu, C (2013) Characterization of the complete mitochondrial genome of Diaphania pyloalis (Lepidoptera: Pyralididae). Gene 527: pp. 283-291 CrossRef
    10. Sima, Y, Chen, M, Yao, R, Li, Y, Liu, T, Jin, X, Wang, L, Su, J, Li, X, Liu, Y (2013) The complete mitochondrial genome of the Ailanthus silkmoth, Samia cynthia cynthia (Lepidoptera: Saturniidae). Gene 526: pp. 309-317 CrossRef
    11. Dai, L, Zhu, B, Liu, Q, Wei, G, Liu, C (2013) Characterization of the complete mitochondrial genome of Bombyx mori strain H9 (Lepidoptera: Bombycidae). Gene 519: pp. 326-334 CrossRef
    12. Kobayashi, N, Takahashi, M, Kihara, S, Niimi, T, Yamashita, O, Yaginuma, T (2014) Cloning of cDNA encoding a Bombyx mori homolog of human oxidation resistance 1 (OXR1) protein from diapause eggs, and analyses of its expression and function. J Insect Physiol 68: pp. 58-68 CrossRef
    13. Ihara, H, Okada, T, Ikeda, Y (2014) Cloning, expression and characterization of Bombyx mori 伪1,6-fucosyltransferase. Biochem Bioph Res Co 450: pp. 953-960 CrossRef
    14. Cai, X, Yu, J, Yu, H, Liu, Y, Fang, Y, Ren, Z, Jia, J, Zhang, G, Guo, X, Jin, B, Gui, Z (2014) Core promoter regulates the expression of cathepsin B gene in the fat body of Bombyx mori. Gene 542: pp. 232-239 CrossRef
    15. Zhou, Y, Chen, H, Li, X, Wang, Y, Chen, K, Zhang, S, Meng, X, Lee, EYC, Lee, MYWT (2011) Production of recombinant human DNA polymerase delta in a Bombyx Mori bioreactor. PLoS One 6: pp. e22224 CrossRef
    16. Jiang, L, Zhao, P, Cheng, T, Sun, Q, Peng, Z, Dang, Y, Wu, X, Wang, G, Jin, S, Lin, P, Xia, Q (2013) A transgenic animal with antiviral properties that might inhibit multiple stages of infection. Antivir Res 98: pp. 171-173 CrossRef
    17. Jiang, L, Zhao, P, Wang, G, Cheng, T, Yang, Q, Jin, S, Lin, P, Xiao, Y, Sun, Q, Xia, Q (2013) Comparison of factors that may affect the inhibitory efficacy of transgenic RNAi targeting of baculoviral genes in silkworm. Bombyx mori Antivir Res 97: pp. 255-263
    18. Jiang, L, Xia, Q (2014) The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori. Insect Biochem Molec 48: pp. 1-7 CrossRef
    19. Arunkumar, KP, Metta, M, Nagaraju, J (2006) Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea proylei mitochondrial DNA. Mol Phylogenet Evol 40: pp. 419-427 CrossRef
    20. Maekawa, H, Takada, N, Mikitani, K, Ogura, T, Miyajima, N, Fujiwara, H, Kobayashi, M, Ninaki, O (1988) Nucleolus organizers in the wild silkworm Bombyx mandarina and the domesticated silkworm B. mori. Chromosoma 96: pp. 263-269 CrossRef
    21. Li, D, Guo, Y, Shao, H, Tellier, LC, Wang, J, Xiang, Z, Xia, Q (2010) Genetic diversity, molecular phylogeny and selection evidence of the silkworm mitochondria implicated by complete resequencing of 41 genomes. BMC Evol Biol 10: pp. 81 CrossRef
    22. Xia, Q, Zhou, Z, Lu, C, Cheng, D, Dai, F, Li, B, Zhao, P, Zha, X, Cheng, T, Chai, C, Pan, G, Xu, J, Liu, C, Lin, Y, Qian, J, Hou, Y, Wu, Z, Li, G, Pan, M, Li, C, Shen, Y, Lan, X, Yuan, L, Li, T, Xu, H, Yang, G, Wan, Y, Zhu, Y, Yu, M, Shen, W (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx Mori). Science 306: pp. 1937-1940 CrossRef
    23. Mita, K, Yasukochi, Y, Kasahara, M, Sasaki, S, Nagayasu, Y, Yamada, T, Kanamori, H, Namiki, N, Kitagawa, M, Yamashita, H, Yasukochi, Y, Kadono-okuda, K, Yamamoto, K, Ajimura, M, Ravikumar, G, Shimomura, M, Nagamura, Y, Shin-I, T, Hiroaaki, A, Shimada, T, Morishita, S, Sasaki, T (2004) The genome sequence of silkworm, Bombyx mori. DNA research: an international journal for rapid publication of reports on genes and genomes 11: pp. 27-35 CrossRef
    24. Xia, Q, Guo, Y, Zhang, Z, Li, D, Xuan, Z, Li, Z, Dai, F, Li, Y, Cheng, D, Li, R, Cheng, T, Jiang, T, Becquet, C, Xu, X, Liu, C, Zha, X, Fan, W, Lin, Y, Shen, Y, Jiang, L, Jensen, J, Hellmann, I, Tang, S, Zhao, P, Xu, H, Yu, C, Zhang, G, Li, J, Cao, J, Liu SHe, N (2009) Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326: pp. 433-436 CrossRef
    25. Hebert, PD, Cywinska, A, Ball, SL, Waard, JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270: pp. 313-321 CrossRef
    26. Zhu, LX, Wu, XB (2011) Phylogenetic evaluation of the taxonomic status of Papilio maackii and P. syfanius (Lepidoptera: Papilionidae). Zool Res 32: pp. 248-254
    27. Gissi, C, Iannelli, F, Pesole, G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified bycomparison of congeneric species. Heredity 101: pp. 301-320 CrossRef
    28. Curole, JP, Kocher, TD (1999) Mitogenomics: digging deeper with complete mitochondrial genomes. Trends Ecol Evol 14: pp. 394-398 CrossRef
    29. Barton, N, Jones, JS (1983) Evolutionary biology: Mitochondrial DNA: new clues about evolution. Nature 306: pp. 317-318 CrossRef
    30. Galtier, N, Nabholz, B, Glemin, S, Hurst, GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18: pp. 4541-4550 CrossRef
    31. Yukuhiro, K, Sezutsu, H, Itoh, M, Shimizu, K, Banno, Y (2002) Significant levels of sequence divergence and gene Rearrangements have occurred between the mitochondrial Genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol Biol Evol 19: pp. 1385-1389 CrossRef
    32. Wei, S, Li, Q, Achterberg, K, Chen, X (2014) Two mitochondrial genomes from the families Bethylidae and Mutillidae: Independent rearrangement of protein-coding genes and higher-level phylogeny of the Hymenoptera. Mol Phylogenet Evol 77: pp. 1-10 CrossRef
    33. Harrison, RG (1989) Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol 4: pp. 6-11 CrossRef
    34. Boore, JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27: pp. 1767-1780 CrossRef
    35. Kawabe, A, Miyashita, NT (2003) Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 78: pp. 343-352 CrossRef
    36. Embley, TM, Martin, W (2006) Eukaryotic evolution, changes and challenges. Nature 440: pp. 623-630 CrossRef
    37. Wise, CA, Sraml, M, Easteal, S (1998) Departure from neutrality at the mitochondrial NADH dehydrogenase subunit 2 gene in humans, but not in chimpanzees. Genetics 148: pp. 409-421
    38. Rand, DM, Kann, LM (1998) Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Genetica (Dordrecht) 102鈥?03: pp. 393-407
    39. David, MR, Michele, D, Lisa, MK (1994) Neutral and nonneutral evolution of drosophila mitochondrial DNA. Genetics 138: pp. 741-756
    40. Nachman, MW, Brown, WM, Stoneking, M, Aquadro, CF (1996) Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics 142: pp. 953-963
    41. Ballard, J, Kreitman, JW (1994) Unraveling selection in the mitochondrial genome of Drosophila. Genetics 138: pp. 757-772
    42. Rand, DM, Haney, RA, Fry, AJ (2004) Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19: pp. 645-653 CrossRef
    43. Dowling, D, Friberg, U, Lindell, J (2008) Evolutionary implications of non-neutral mitochondrial genetic variation. Trends Ecol Evol 23: pp. 546-554 CrossRef
    44. Gemmell, NJ, Metcalf, VJ, Allendorf, FW (2004) Mothers curse the effect of mtDNA on individual fitness and population viability. Trends in Ecology and Evolution 19: pp. 238-244 CrossRef
    45. Blier, PU, Dufresne, F, Burton, RS (2001) Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends Genet 17: pp. 400-406 CrossRef
    46. Meiklejohn, CD, Montooth, KL, Rand, DM (2007) Positive and negative selection on the mitochondrial genome. Trends Genet 23: pp. 259-263 CrossRef
    47. Ballard, J, Rand, DM (2005) The population biology of mitochondrial DNA and its phylogenetic implications. Annu Rev Ecol Evol Syst 36: pp. 621-642 CrossRef
    48. Burton, RS, Ellison, CK, Harrison, JS (2006) The sorry state of F2 hybrids: consequences of rapid mitochondrial DNA evolution in allopatric populations. Am Nat 168: pp. S14-S24 CrossRef
    49. Rand, DM (2001) The Units of Selection of Mitochondrial DNA. Annu Rev Ecol Syst 32: pp. 415-448 CrossRef
    50. Pesole, G, Gissi, C, Chirico, A, Saccone, C (1999) Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol 48: pp. 427-434 CrossRef
    51. Wright, F (1990) The 鈥榚ffective number of codons鈥?used in a gene. Gene 87: pp. 23-29 CrossRef
    52. Tao, P, Dai, L, Luo, M, Tang, F, Tien, P, Pan, Z (2009) Analysis of synonymous codon usage in classical swine fever virus. Virus Genes 38: pp. 104-112 CrossRef
    53. Liu, YS, Zhou, JH, Chen, HT, Ma, LN, Pejsak, Z, Ding, YZ, Zhang, J (2011) The characteristics of the synonymous codon usage in enterovirus 71 virus and the effects of host on the virus in codon usage pattern. Infect Genet Evol 11: pp. 1168-1173 CrossRef
    54. Duret, L, Mouchiroud, D (1999) Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci U S A 96: pp. 4482-4487 CrossRef
    55. Qiu, S, Bergero, R, Zeng, K, Charlesworth, D (2010) Patterns of codon usage Bias in Silene latifolia. Mol Biol Evol 28: pp. 771-780 CrossRef
    56. Comeron, JM, Aguade, M (1998) An evaluation of measures of synonymous codon usage bias. J Mol Evol 47: pp. 268-274 CrossRef
    57. Jia, W, Higgs, PG (2008) Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Mol Biol Evol 25: pp. 339-351 CrossRef
    58. Wright, SI (2004) Effects of gene expression on molecular evolution in Arabidopsis thaliana and Arabidopsis lyrata. Mol Biol Evol 21: pp. 1719-1726 CrossRef
    59. Zhang, Z, Li, J, Cui, P, Ding, F, Li, A, Townsend, JP, Yu, J (2012) Codon deviation coefficient: a novel measure for estimating codon usage bias and its statistical significance. BMC Bioinformatics 13: pp. 43 CrossRef
    60. Ikemura, T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2: pp. 13-34
    61. Hou, ZC, Yang, N (2003) Factors affecting codon usage in Yersinia pestis. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35: pp. 580-586
    62. Moriyama, EN, Powell, JR (1998) Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucleic Acids Res 26: pp. 3188-3193 CrossRef
    63. Miyasaka, H (2002) Translation initiation AUG context varies with codon usage bias and gene length in Drosophila melanogaster. J Mol Evol 55: pp. 52-64 CrossRef
    64. Liu, S, Xue, D, Cheng, R, Han, H (2014) The complete mitogenome of Apocheima cinerarius (Lepidoptera: Geometridae: Ennominae) and comparison with that of other Lepidopteran insects. Gene 547: pp. 136-144 CrossRef
    65. Roychoudhury, S, Mukherjee, D (2010) A detailed comparative analysis on the overall codon usage pattern in herpesviruses. Virus Res 148: pp. 31-43 CrossRef
    66. Bennetzen, JL, Hall, BD (1982) Codon selection in yeast. The Journal of biological chemistry 257: pp. 3026-3031
    67. Sharp, PM, Tuohy, TM, Mosurski, KR (1986) Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 14: pp. 5125-5143 CrossRef
    68. Kyte, J, Doolittle, RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: pp. 105-132 CrossRef
    69. Lobry, JR, Gautier, C (1994) Hydrophobicity, expressivity and aromaticity are the major trends of amino-acid usage in 999 Escherichia coli chromosome-encoded genes. Nucleic Acids Res 22: pp. 3174-3180 CrossRef
    70. Gupta, SK, Ghosh, TC (2001) Gene expressivity is the main factor in dictating the codon usage variation among the genes in Pseudomonas aeruginosa. Gene 273: pp. 63-70 CrossRef
    71. Grantham, R, Gautier, C, Gouy, M, Mercier, R, Pave, A (1980) Codon catalog usage and the genome hypothesis. Nucleic Acids Res 8: pp. r49-r62 CrossRef
    72. Sharp, PM, Devine, KM (1989) Codon usage and gene expression level in Dictyostelium discoideum: highly expressed genes do 鈥榩refer鈥?optimal codons. Nucleic Acids Res 17: pp. 5029-5039 CrossRef
    73. Shields, DC, Sharp, PM (1987) Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res 15: pp. 8023-8040 CrossRef
    74. Sueoka, N (1988) Directional mutation pressure and neutral molecular evolution. P Natl Acad Sci USA 85: pp. 2653-2657 CrossRef
    75. Sueoka, N (1999) Two aspects of DNA base composition: G鈥?鈥塁 content and translation-coupled deviation from intra-strand rule of A鈥?鈥塗 and G鈥?鈥塁. J Mol Evol 49: pp. 49-62 CrossRef
  • 刊物主题:Evolutionary Biology; Animal Systematics/Taxonomy/Biogeography; Entomology; Genetics and Population Dynamics; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2148
文摘
Background Synonymous codon usage bias (SCUB) is an inevitable phenomenon in organismic taxa, generally referring to differences in the occurrence frequency of codons across different species or within the genome of the same species. SCUB happens in various degrees under pressure from nature selection, mutation bias and other factors in different ways. It also attaches great significance to gene expression and species evolution, however, a systematic investigation towards the codon usage in Bombyx mori (B. mori) has not been reported yet. Moreover, it is still indistinct about the reasons contributing to the bias or the relationship between the bias and the evolution of B. mori. Results The comparison of the codon usage pattern between the genomic DNA (gDNA) and the mitochondrial DNA (mtDNA) from B. mori suggests that mtDNA has a higher level of codon bias. Furthermore, the correspondence analysis suggests that natural selection, such as gene length, gene function and translational selection, dominates the codon preference of mtDNA, while the composition constraints for mutation bias only plays a minor role. Additionally, the clustering results of the silkworm superfamily suggest a lack of explicitness in the relationship between the codon usage of mitogenome and species evolution. Conclusions Among the complicated influence factors leading to codon bias, natural selection is found to play a major role in shaping the high bias in the mtDNA of B. mori from our current data. Although the cluster analysis reveals that codon bias correlates little with the species evolution, furthermore, a detailed analysis of codon usage of mitogenome provides better insight into the evolutionary relationships in Lepidoptera. However, more new methods and data are needed to investigate the relationship between the mtDNA bias and evolution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700