用户名: 密码: 验证码:
Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate
详细信息    查看全文
  • 作者:YingQi Li (1)
    FengChao Wang (1)
    He Liu (1) (2)
    HengAn Wu (1)

    1. CAS Key Laboratory of Materials Behavior and Design of Materials
    ; Department of Modern Mechanics ; University of Science and Technology of China ; Hefei ; 230027 ; Anhui ; China
    2. PetroChina Research Institute of Petroleum Exploration and Development
    ; Beijing ; 100083 ; China
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:18
  • 期:1
  • 页码:111-120
  • 全文大小:1,804 KB
  • 参考文献:1. Adao MH, De Ruijter M, Voue M et al (1999) Droplet spreading on heterogeneous substrates using molecular dynamics. Phys Rev E 59:746鈥?50 CrossRef
    2. Alava MJ, Dube M (2012) Droplet spreading and pinning on heterogeneous substrates. Phys Rev E 86:011607 CrossRef
    3. Baby TT, Ramaprabhua S (2010) Investigation of thermal and electrical conductivity of graphene based nanofluids. J Appl Phys 108:124308 CrossRef
    4. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269鈥?271 CrossRef
    5. Bonn D, Eggers J, Indekeu J et al (2009) Wetting and spreading. Rev Mod Phys 81:739鈥?05 CrossRef
    6. Chen HG, Bodmeier R (1990) Indomethacin polymeric nanosuspensions prepared by microfujidization. J Control Release 12:223鈥?33 CrossRef
    7. Chengara A, Nikolov AD, Wasan DT et al (2004) Spreading of nanofluids driven by the structural disjoining pressure gradient. J Colloid Interface Sci 280:192鈥?01 CrossRef
    8. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-Newtonian flows. American Society of Mechanical Engineers, New York, pp 99鈥?05
    9. Chon CH, Kihm KD, Lee SP et al (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87:153107 CrossRef
    10. Coe JR, Godfery TB (1944) Viscosity of water. J Appl Phys 15:625 CrossRef
    11. de Gennes PG (1985) Wetting鈥攕tatics and dynamics. Rev Mod Phys 57:827鈥?63 CrossRef
    12. De Ruijter MJ, De Coninck J, Oshanin G (1999) Droplet spreading: partial wetting regime revisited. Langmuir 15:2209鈥?216 CrossRef
    13. Du XS, Li QX, Chen Y et al (2007) Pair-hopping characteristic of lithium diffusive motion in li-doped beta-phase manganese phthalocyanine. J Phys Chem B 111:10064鈥?0068 CrossRef
    14. Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol 196:326鈥?30 CrossRef
    15. Han J, Kim C (2012) Spreading of a suspension drop on a horizontal surface. Langmuir 28:2680鈥?689 CrossRef
    16. Harkins WD, Feldman A (1922) Films the spreading of liquids and the spreading coefficient. J Am Chem Soc 44:2665鈥?685 CrossRef
    17. Heine DR, Grest GS, Webb EB (2005) Surface wetting of liquid nanodroplets: droplet-size effects. Phys Rev Lett 95:107801 CrossRef
    18. Hong TK, Yang HS, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97:064311 CrossRef
    19. Huppert HE (1982) The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J Fluid Mech 121:43鈥?8 CrossRef
    20. Joanny JF, de Gennes PG (1986) Upward creep of a wetting fluid鈥攁 scaling analysis. J Phys 47:121鈥?27 CrossRef
    21. Kestin J, Sokolov M, Wakeham WA (1978) Viscosity of liquid water in range 鈭? C to 150 C. J Phys Chem 7:941鈥?48
    22. Kole M, Dey TK (2010) Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. J Phys D Appl Phys 43:315501 CrossRef
    23. Kondiparty K, Nikolov A, Wu S et al (2011) Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments. Langmuir 27:3324鈥?335 CrossRef
    24. Lee S, Choi SUS, Li S et al (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Trans 121:280鈥?89 CrossRef
    25. Lin JQ, Zhang HW, Chen Z et al (2011) Simulation study of aggregations of monolayer-protected gold nanoparticles in solvents. J Phys Chem C 115:18991鈥?8998 CrossRef
    26. Liu GL, Kim J, Lu Y et al (2006) Optofluidic control using photothermal nanoparticles. Nat Mater 5:27鈥?2 CrossRef
    27. Mchale G, Newton MI, Rowan SM et al (1995) The spreading of small viscous stripes of oil. J Phys D Appl Phys 28:1925鈥?929 CrossRef
    28. Minea AA, Luciu RS (2012) Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluid Nanofluid 13:977鈥?85 CrossRef
    29. Nieminen JA, Abraham DB, Karttunen M et al (1992) Molecular-dynamics of a microscopic droplet on solid-surface. Phys Rev Lett 69:124鈥?27 CrossRef
    30. Oppenheim RC (1981) Solid colloidal drug delivery systems: nanoparticles. Int J Pharm 8:217鈥?34 CrossRef
    31. Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69:931鈥?80 CrossRef
    32. Pilkington GA, Briscoe WH (2012) Nanofluids mediating surface forces. Adv Colloid Interface 179:68鈥?4 CrossRef
    33. Plimpton SJ (1995) Fast parallel algorithms for short-ranged molecular dynamics. J Comput Phys 117:1鈥?9 CrossRef
    34. Prasher R, Song D, Wang JL et al (2006) Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett 89:133108 CrossRef
    35. Ren WQ, Hu D, Weinan E (2010) Continuum models for the contact line problem. Phys Fluids 22:102103 CrossRef
    36. Ritos K, Dongari N, Borg MK et al (2013) Dynamics of nanoscale droplets on moving surfaces. Langmuir 29:6936鈥?943 CrossRef
    37. Shu XL, Tao P, Li XC et al (2013) Helium diffusion in tungsten: a molecular dynamics study. Nucl Instrum Methods Phys Res Sect B 303:84鈥?6 CrossRef
    38. Song FH, Li BQ, Liu C (2013) Molecular dynamics simulation of nanosized water droplet spreading in an electric field. Langmuir 29:4266鈥?274 CrossRef
    39. Tanner LH (1979) Spreading of Silicone oil drops on horizontal surfaces. J Phys D Appl Phys 12:1473鈥?484 CrossRef
    40. Thomas JA, Mcgaughey AJH (2008) Reassessing fast water transport through carbon nanotubes. Nano Lett 8:2788鈥?793 CrossRef
    41. Timofeeva EV, Routbort JL, Singh D (2009) Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys 106:014304 CrossRef
    42. Trokhymchuk A, Henderson D, Nikolov A et al (2001) A simple calculation of structural and depletion forces for fluids/suspensions confined in a film. Langmuir 17:4940鈥?947 CrossRef
    43. Vafaei S, Borca-Tasciuc T, Podowski MZ et al (2006) Effect of nanoparticles on sessile droplet contact angle. Nanotechnology 17:2523鈥?527 CrossRef
    44. Wang FC, Wu HA (2013) Enhanced oil droplet detachment from solid surfaces in charged nanoparticle suspensions. Soft Matter 9:7974鈥?980 CrossRef
    45. Wasan DT, Nikolov AD (1999) In supramolecular structure in confined geometries. In Marne G, Warr G (eds) ACS Symp Ser vol 736, pp 40鈥?3
    46. Wasan DT, Nikolov AD (2003) Spreading of nanofluids on solids. Nature 423:156鈥?59 CrossRef
    47. Weon BM, Je JH (2013) Self-pinning by colloids confined at a contact line. Phys Rev Lett 110:028303 CrossRef
    48. Xu H, Shirvanyants D, Beers K et al (2004) Molecular motion in a spreading precursor film. Phys Rev Lett 93:206103 CrossRef
    49. Yuan QZ, Zhao YP (2010) Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Phys Rev Lett 104:246101 CrossRef
    50. Yuan QZ, Zhao YP (2012) Topology-dominated dynamic wetting of the precursor chain in a hydrophilic interior corner. Proc R Soc Math Phys 468:310鈥?22 CrossRef
    51. Yuan QZ, Zhao YP (2013a) Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface. J Fluid Mech 716:171鈥?88 CrossRef
    52. Yuan QZ, Zhao YP (2013b) Wetting on flexible hydrophilic pillar-arrays. Sci Rep 3:1944
    53. Zhao YP (2012) Physical mechanics of surfaces and interfaces. Beijing, Science Press, pp 552鈥?60
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
Nanofluids, which are the term for suspensions of nanometer-sized structures, have recently been extensively used in a rapid increasing number of applications. In this work, spreading behaviors of water-based nanofluid droplets were investigated via molecular dynamics simulation. Influencing factors such as nanoparticle volume fraction and surface wettability were discussed in details on the atomic scale. Our simulation results demonstrated that the dynamics spreading of nanofluids can be effectively regulated by adjusting these factors. Based on the scaling law \(R(t) \propto t^{1/n} ,\) we proposed a competitive mechanism analysis among surface tension, viscous force and disjoining pressure, which describes the power relationship between contact radius R and spreading time t. These findings indicate that the nanoparticle-tuned spreading behavior of nanofluid droplets can be extensively used for diverse applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700