用户名: 密码: 验证码:
GWAS identifies an NAT2 acetylator status tag single nucleotide polymorphism to be a major locus for skin fluorescence
详细信息    查看全文
  • 作者:Karen M. Eny (1)
    Helen L. Lutgers (2)
    John Maynard (3)
    Barbara E. K. Klein (4)
    Kristine E. Lee (4)
    Gil Atzmon (5) (6)
    Vincent M. Monnier (7) (8)
    Jana V. van Vliet-Ostaptchouk (2)
    Reindert Graaff (2)
    Pim van der Harst (9)
    Harold Snieder (10)
    Melanie M. van der Klauw (2)
    David R. Sell (7)
    S. Mohsen Hosseini (1)
    Patricia A. Cleary (11)
    Barbara H. Braffett (11)
    Trevor J. Orchard (12)
    Timothy J. Lyons (13)
    Kerri Howard (4)
    Ronald Klein (4)
    Jill P. Crandall (5)
    Nir Barzilai (5) (6)
    Sofiya Milman (5)
    Danny Ben-Avraham (5) (6)
    Bruce H. R. Wolffenbuttel (2)
    Andrew D. Paterson (1) (14)
  • 关键词:Acetylation ; Genome ; wide association study ; NAT2 ; Skin autofluorescence ; Skin fluorescence ; Skin intrinsic fluorescence
  • 刊名:Diabetologia
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:57
  • 期:8
  • 页码:1623-1634
  • 全文大小:492 KB
  • 参考文献:1. Dyer DG, Dunn JA, Thorpe SR et al (1993) Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest 91:2463-469 CrossRef
    2. Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315-321 CrossRef
    3. Leslie RD, Beyan H, Sawtell P, Boehm BO, Spector TD, Snieder H (2003) Level of an advanced glycated end product is genetically determined: a study of normal twins. Diabetes 52:2441-444 CrossRef
    4. Verzijl N, DeGroot J, Thorpe SR et al (2000) Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 275:39027-9031 CrossRef
    5. Monnier VM, Bautista O, Kenny D et al (1999) Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group, Diabetes Control and Complications Trial. Diabetes 48:870-80 CrossRef
    6. Monnier VM, Sell DR, Strauch C et al (2013) The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes. J Diabetes Complications 27:141-49 CrossRef
    7. Genuth S, Sun W, Cleary P et al (2005) Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications participants with type 1 diabetes. Diabetes 54:3103-111 CrossRef
    8. Meerwaldt R, Graaff R, Oomen PH et al (2004) Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia 47:1324-330 CrossRef
    9. Hull E, Ediger M, Unione A, Deemer E, Stroman M, Baynes J (2004) Noninvasive, optical detection of diabetes: model studies with porcine skin. Opt Express 12:4496-510 CrossRef
    10. Richards-Kortum R, Sevick-Muraca E (1996) Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem 47:555-06 CrossRef
    11. Meerwaldt R, Lutgers HL, Links TP et al (2007) Skin autofluorescence is a strong predictor of cardiac mortality in diabetes. Diabetes Care 30:107-12 CrossRef
    12. Cleary PA, Braffett BH, Orchard T et al (2013) Clinical and technical factors associated with skin intrinsic fluorescence in subjects with type 1 diabetes from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study. Diabetes Technol Ther 15:466-74 CrossRef
    13. Koetsier M, Lutgers HL, de Jonge C, Links TP, Smit AJ, Graaff R (2010) Reference values of skin autofluorescence. Diabetes Technol Ther 12:399-03 CrossRef
    14. Maynard JD, Rohrscheib M, Way JF, Nguyen CM, Ediger MN (2007) Noninvasive type 2 diabetes screening: superior sensitivity to fasting plasma glucose and A1C. Diabetes Care 30:1120-124 CrossRef
    15. Orchard TJ, Lyons TJ, Cleary PA et al (2013) The association of skin-intrinsic fluorescence with type 1 diabetes complications in the DCCT/EDIC Study. Diabetes Care 36:3146-153 CrossRef
    16. Conway BN, Aroda VR, Maynard JD et al (2011) Skin intrinsic fluorescence correlates with autonomic and distal symmetrical polyneuropathy in individuals with type 1 diabetes. Diabetes Care 34:1000-005 CrossRef
    17. Conway BN, Aroda VR, Maynard JD et al (2012) Skin intrinsic fluorescence is associated with coronary artery disease in individuals with long duration of type 1 diabetes. Diabetes Care 35:2331-336 CrossRef
    18. Conway B, Edmundowicz D, Matter N, Maynard J, Orchard T (2010) Skin fluorescence correlates strongly with coronary artery calcification severity in type 1 diabetes. Diabetes Technol Ther 12:339-45 CrossRef
    19. Lutgers HL, Gerrits EG, Graaff R et al (2009) Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus. Diabetologia 52:789-97 CrossRef
    20. Barat P, Cammas B, Lacoste A et al (2012) Advanced glycation end products in children with type 1 diabetes: family matters? Diabetes Care 35:e1 CrossRef
    21. Kessel L, Hougaard JL, Sander B, Kyvik KO, Sorensen TI, Larsen M (2002) Lens ageing as an indicator of tissue damage associated with smoking and non-enzymatic glycation—a twin study. Diabetologia 45:1457-462 CrossRef
    22. Stolk RP, Rosmalen JG, Postma DS et al (2008) Universal risk factors for multifactorial diseases: LifeLines: a three-generation population-based study. Eur J Epidemiol 23:67-4 CrossRef
    23. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE (2009) The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: the twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology 116:497-03 CrossRef
    24. Han J, Ryu S, Moskowitz DM et al (2013) Discovery of novel non-synonymous SNP variants in 988 candidate genes from 6 centenarians by target capture and next-generation sequencing. Mech Ageing Dev 134:478-85 CrossRef
    25. Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group (1999) Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort. Diabetes Care 22:99-11
    26. Koetsier M, Nur E, Chunmao H et al (2010) Skin color independent assessment of aging using skin autofluorescence. Opt Express 18:14416-4429 CrossRef
    27. Paterson AD, Waggott D, Boright AP et al (2010) A genome-wide association study identifies a novel major locus for glycemic control in type 1 diabetes, as measured by both A1C and glucose. Diabetes 59:539-49 CrossRef
    28. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190 CrossRef
    29. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904-09 CrossRef
    30. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190-191 CrossRef
    31. Tobin MD, Sheehan NA, Scurrah KJ, Burton PR (2005) Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat Med 24:2911-935 CrossRef
    32. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559-75 CrossRef
    33. Garcia-Closas M, Hein DW, Silverman D et al (2011) A single nucleotide polymorphism tags variation in the arylamine N-acetyltransferase 2 phenotype in populations of European background. Pharmacogenet Genomics 21:231-36
    34. He YJ, Shapero MH, McLeod HL (2012) Novel tagging SNP rs1495741 and 2-SNPs (rs1041983 and rs1801280) yield a high prediction of the NAT2 genotype in HapMap samples. Pharmacogenet Genomics 22:322-24 CrossRef
    35. Selinski S, Blaszkewicz M, Lehmann ML et al (2011) Genotyping NAT2 with only two SNPs (rs1041983 and rs1801280) outperforms the tagging SNP rs1495741 and is equivalent to the conventional 7-SNP NAT2 genotype. Pharmacogenet Genomics 21:673-78 CrossRef
    36. Teslovich TM, Musunuru K, Smith AV et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707-13 CrossRef
    37. Soranzo N, Sanna S, Wheeler E et al (2010) Common variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and nonglycemic pathways. Diabetes 59:3229-239 CrossRef
    38. Manning AK, Hivert MF, Scott RA et al (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 44:659-69 CrossRef
    39. Chabroux S, Canoui-Poitrine F, Reffet S et al (2010) Advanced glycation end products assessed by skin autofluorescence in type 1 diabetics are associated with nephropathy, but not retinopathy. Diabetes Metab 36:152-57 CrossRef
    40. Thornalley PJ (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol Drug Interact 23:125-50 CrossRef
    41. Tessier F, Obrenovich M, Monnier VM (1999) Structure and mechanism of formation of human lens fluorophore LM-1. Relationship to vesperlysine A and the advanced Maillard reaction in aging, diabetes, and cataractogenesis. J Biol Chem 274:20796-0804 CrossRef
    42. Beisswenger PJ, Howell S, Mackenzie T, Corstjens H, Muizzuddin N, Matsui MS (2012) Two fluorescent wavelengths, 440(ex)/520(em) nm and 370(ex)/440(em) nm, reflect advanced glycation and oxidation end products in human skin without diabetes. Diabetes Technol Ther 14:285-92 CrossRef
    43. Ramanujam N (2000) Fluorescence spectroscopy in vivo. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 20-6
    44. Sabbagh A, Marin J, Veyssiere C et al (2013) Rapid birth-and-death evolution of the xenobiotic metabolizing NAT gene family in vertebrates with evidence of adaptive selection. BMC Evol Biol 13:62 CrossRef
    45. Rothman N, Garcia-Closas M, Chatterjee N et al (2010) A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat Genet 42:978-84 CrossRef
    46. Suhre K, Shin SY, Petersen AK et al (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477:54-0 CrossRef
    47. Suhre K, Wallaschofski H, Raffler J et al (2011) A genome-wide association study of metabolic traits in human urine. Nat Genet 43:565-69 CrossRef
    48. Varani J, Dame MK, Rittie L et al (2006) Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 168:1861-868 CrossRef
    49. Bhaiya P, Roychowdhury S, Vyas PM, Doll MA, Hein DW, Svensson CK (2006) Bioactivation, protein haptenation, and toxicity of sulfamethoxazole and dapsone in normal human dermal fibroblasts. Toxicol Appl Pharmacol 215:158-67 CrossRef
    50. Hickman D, Pope J, Patil SD et al (1998) Expression of arylamine N-acetyltransferase in human intestine. Gut 42:402-09 CrossRef
  • 作者单位:Karen M. Eny (1)
    Helen L. Lutgers (2)
    John Maynard (3)
    Barbara E. K. Klein (4)
    Kristine E. Lee (4)
    Gil Atzmon (5) (6)
    Vincent M. Monnier (7) (8)
    Jana V. van Vliet-Ostaptchouk (2)
    Reindert Graaff (2)
    Pim van der Harst (9)
    Harold Snieder (10)
    Melanie M. van der Klauw (2)
    David R. Sell (7)
    S. Mohsen Hosseini (1)
    Patricia A. Cleary (11)
    Barbara H. Braffett (11)
    Trevor J. Orchard (12)
    Timothy J. Lyons (13)
    Kerri Howard (4)
    Ronald Klein (4)
    Jill P. Crandall (5)
    Nir Barzilai (5) (6)
    Sofiya Milman (5)
    Danny Ben-Avraham (5) (6)
    Bruce H. R. Wolffenbuttel (2)
    Andrew D. Paterson (1) (14)

    1. Program in Genetics and Genomic Biology, Hospital for Sick Children, 686 Bay Street, Room 12.9830, Toronto, ON, M5G 0A4, Canada
    2. Department of Endocrinology, University Medical Center Groningen, University of Groningen, HPC AA31, PO Box 30001, 9700 RB, Groningen, the Netherlands
    3. VeraLight, Inc, Albuquerque, NM, USA
    4. Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
    5. Department of Medicine, Institute for Aging Research and the Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
    6. Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
    7. Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
    8. Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
    9. Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
    10. Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
    11. Biostatistics Center, George Washington University, Rockville, MD, USA
    12. Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
    13. Centre for Experimental Medicine, Institute of Clinical Science, Queen’s University of Belfast, Belfast, UK
    14. Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
  • ISSN:1432-0428
文摘
Aims/hypothesis Skin fluorescence (SF) is a non-invasive marker of AGEs and is associated with the long-term complications of diabetes. SF increases with age and is also greater among individuals with diabetes. A familial correlation of SF suggests that genetics may play a role. We therefore performed parallel genome-wide association studies of SF in two cohorts. Methods Cohort 1 included 1,082 participants, 35-7?years of age with type 1 diabetes. Cohort 2 included 8,721 participants without diabetes, aged 18-0?years. Results rs1495741 was significantly associated with SF in Cohort 1 (p--?×-0?0), which is known to tag the NAT2 acetylator phenotype. The fast acetylator genotype was associated with lower SF, explaining up to 15% of the variance. In Cohort 2, the top signal associated with SF (p--.3?×-0?2) was rs4921914, also in NAT2, 440 bases upstream of rs1495741 (linkage disequilibrium r 2--.0 for rs4921914 with rs1495741). We replicated these results in two additional cohorts, one with and one without type 1 diabetes. Finally, to understand which compounds are contributing to the NAT2–SF signal, we examined 11 compounds assayed from skin biopsies (n--98): the fast acetylator genotype was associated with lower levels of the AGEs hydroimidazolones of glyoxal (p--.017). Conclusions/interpretation We identified a robust association between NAT2 and SF in people with and without diabetes. Our findings provide proof of principle that genetic variation contributes to interindividual SF and that NAT2 acetylation status plays a major role.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700