用户名: 密码: 验证码:
Spectral and Pseudospectral Optimal Control Over Arbitrary Grids
详细信息    查看全文
  • 作者:Qi Gong ; Isaac Michael Ross ; Fariba Fahroo
  • 关键词:Optimal control ; Pseudospectral ; Computation ; 49J15
  • 刊名:Journal of Optimization Theory and Applications
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:169
  • 期:3
  • 页码:759-783
  • 全文大小:1,596 KB
  • 参考文献:1.Bedrossian, N., Bhatt, S., Lammers, M., Nguyen, L., Zhang, Y.: First ever flight demonstration of zero propellant maneuver attitude control concept. In: Guidance, Navigation, and Control Conference, pp. AIAA-2007-6734. Hilton Head, South Carolina (2007)
    2.Bedrossian, N., Bhatt, S., Lammers, M., Nguyen, L.: Zero propellant maneuver: flight results for 180\(^\circ \) iss rotation. In: 20th International Symposium on Space Flight Dynamics, NASA/CP-2007-214158. Annapolis, MD (2007)
    3.Kang, W., Bedrossian, N.: Pseudospectral optimal control theory makes debut flight–saves NASA $1M in under 3 hrs. SIAM News 40(7), 1–3 (2007)
    4.Bedrossian, N.S., Bhatt, S., Kang, W., Ross, I.M.: Zero-propellant maneuver guidance. IEEE Control Syst. Mag. 29(5), 53–73 (2009)MathSciNet CrossRef
    5.Bedrossian, N., Karpenko, M., Bhatt, S.: Overclock my satellite. IEEE Spectr. 49(11), 54–62 (2012)CrossRef
    6.Karpenko, M., Bhatt, S., Bedrossian, N., Fleming, A., Ross, I.M.: First flight results on time-optimal spacecraft slews. AIAA J. Guid. Control Dyn. 35(2), 367–376 (2012)CrossRef
    7.Karpenko, M., Bhatt, S., Bedrossian, N., Ross, I.M.: Flight implementation of shortest-time maneuvers for imaging satellites. AIAA J. Guid. Control Dyn. 37(4), 1069–1079 (2014)CrossRef
    8.Ross, I.M., Karpenko, M.: A review of pseudospectral optimal control: from theory to flight. Annu. Rev. Control 36(2), 182–197 (2012)CrossRef
    9.Ross, I.M.: A Primer on Pontryagin’s Principle in Optimal Control, 2nd edn. Collegiate Publishers, San Francisco, CA (2015)
    10.Paris, S.W., Riehl, J., Sjauw, W.: Enhanced procedures for direct trajectory optimization using nonlinear programming and implicit integration. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pp. 21–24, AIAA 2006–6309. Keystone, CO. (2006)
    11.Lu, P., Sun, H., Tsai, B.: Closed-loop endoatmospheric ascent guidance. AIAA J. Guid. Control Dyn. 26(2), 283–294 (2003)CrossRef
    12.Williams, P., Lansdorp, B., Ockesl, W.: Optimal crosswind towing and power generation with tethered kites. AIAA J. Guid. Control Dyn. 31(1), 81–93 (2008)CrossRef
    13.Stevens, R., Wiesel, W.: Large time scale optimal control of an electrodynamic tether satellite. AIAA J. Guid. Control Dyn. 31(6), 1716–1727 (2008)CrossRef
    14.Gong, Q., Kang, W., Bedrossian, N.S., Fahroo, F., Sekhavat, P., Bollino, K.: Pseudospectral optimal control for military and industrial applications. In: The 46th IEEE Conference on Decision and Control, pp. 4128–4142 (2007)
    15.Hawkins, A.M., Fill, T.R., Proulx, R.J., Feron, E.M.: Constrained trajectory optimization for lunar landing. In: AAS Spaceflight Mechanics Meeting, AAS 06–153. Tampa, FL (2006)
    16.Williams, P.: Three-dimensional aircraft terrain-following via real-time optimal control. J. Guid. Control Dyn. 30(4), 1201–1206 (2007)CrossRef
    17.Bollino, K.P., Lewis, L.R.: Optimal path planning and control of tactical unmanned aerial vehicles in urban environments. In: Proceedings of the AUVSIs Unmanned Systems North America 2007 Conference. Washington, DC (2007)
    18.Ross, I.M., Gong, Q., Sekhavat, P.: The bellman pseudospectral method. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA-2008-6448. Honolulu, Hawaii (2008)
    19.Ross, I.M., Gong, Q., Sekhavat, P.: Low-thrust, high-accuracy trajectory optimization. J. Guid. Control Dyn. 30(4), 921–933 (2007)CrossRef
    20.Ross, I.M., Fahroo, F.: Pseudospectral methods for optimal motion planning of differentially flat systems. IEEE Trans. Autom. Control 49(8), 1410–1413 (2004)MathSciNet CrossRef
    21.Ross, I.M., Fahroo, F.: Pseudospectral methods for optimal motion planning of differentially flat systems. In: Proceedings of the IEEE Conference on Decision and Control, Las Vegas, NV. IEEE (2002)
    22.Ross, I.M., Sekhavat, P., Fleming, A., Gong, Q.: Optimal feedback control: foundations, examples, and experimental results for a new approach. J. Guid. Control Dyn. 31(2), 307–321 (2008)CrossRef
    23.Ross, I.M., Fahroo, F.: Issues in the real-time computation of optimal control. Math. Comput. Model. 43(9), 1172–1188 (2006)MathSciNet CrossRef MATH
    24.Ross, I.M., Fahroo, F.: A unified computational framework for real-time optimal control, ieee. In: Proceedings of the 42nd IEEE Conference on Decision and Control. IEEE, Maui, Hawaii (2003)
    25.Li, J.S., Ruths, J., Yu, T.Y., Arthanari, H., Wagner, G.: Optimal pulse design in quantum control: a unified computational method. Proc. Nat. Acad. Sci. 108(5), 1879–1884 (2011)CrossRef
    26.Li, J.S., Khaneja, N.: Control of inhomogeneous quantum ensembles. Phys. Rev. A 73, 030,302-1–030,303–4 (2006)
    27.Ross, I.M., Proulx, R.J., Karpenko, M.: Unscented optimal control for space flight. In: Proceedings of the 24th International Symposium on Space Flight Dynamics. Laurel, MD (2014)
    28.Ross, I.M., Proulx, R.J., Karpenko, M.: Unscented optimal control for orbital and proximity operations in an uncertain environment: A new Zermelo problem. In: Proceedings of AIAA Space and Astronautics Forum and Exposition: AIAA/AAS Astrodynamics Specialist Conference. San Diego, CA (2014)
    29.Bienstock, D., Chertkov, M., Harnett, S.: Chance-constrained optimal power flow: risk-aware network control under uncertainty. SIAM Rev. 56(3), 461–495 (2014)MathSciNet CrossRef MATH
    30.Ono, M., Kuwata, Y., Balaram, J.: Mixed-strategy chance constrained optimal control. In: Proceedings of the American Control Conference, pp. 4666–4673 (2013)
    31.Phelps, C., Gong, Q., Royset, J.O., Walton, C., Kaminer, I.: Consistent approximation of a nonlinear optimal control problem with uncertain parameters. Automatica 50(12), 2987–2997 (2014)MathSciNet CrossRef MATH
    32.Walton, C., Gong, Q., Kaminer, I., Royset, J.O.: Optimal motion planning for searching for uncertain targets. In: Proceedings of the 19th IFAC World Congress. South Africa (2014)
    33.Ross, I.M., Proulx, R.J., Karpenko, M., Gong, Q.: Riemann-Stieltjes optimal control problems for uncertain dynamical systems. AIAA J. Guid. Control Dyn. 38(7), 1251–1263 (2015)CrossRef
    34.Ross, I.M., Karpenko, M., Proulx, R.J.: A lebesgue–stieltjes framework for optimal control and allocation. In: Proceedings of the American Control Conference. IEEE, Chicago, IL (2015)
    35.Elnagar, G., Kazemi, M.A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40(10), 1793–1796 (1995)MathSciNet CrossRef MATH
    36.Elnagar, G.N., Kazemi, M.A.: Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Comput. Optim. Appl. 11(2), 195–217 (1998)MathSciNet CrossRef MATH
    37.Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1977)CrossRef MATH
    38.Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1998)MATH
    39.Trefethen, L.N.: Spectral methods in MATLAB. Siam, Philadelphia (2000)CrossRef MATH
    40.Gong, Q., Ross, I.M., Fahroo, F.: Pseudospectral optimal control on arbitrary grids. In: AAS Astrodynamics Specialist Conference, pp. AAS 09–405 (2009)
    41.Fahroo, F., Ross, I.M.: Advances in pseudospectral methods for optimal control. In: AIAA Guidance, Navigation and Control Conference and Exhibit, pp. 18–21 (2008)
    42.Gong, Q., Ross, I.M., Fahroo, F.: Costate computation by a Chebyshev pseudospectral method. AIAA J. Guid. Control Dyn. 33(2), 623–628 (2010)CrossRef
    43.Fahroo, F., Ross, I.M.: Convergence of the costates does not imply convergence of the control. J. Guid. Control Dyn. 31(5), 1492–1497 (2008)CrossRef
    44.Polak, E.: Optimization: Algorithms and Consistent Approximations. Springer, New York, NY (1997)CrossRef MATH
    45.Fahroo, F., Ross, I.M.: Pseudospectral methods for infinite-horizon nonlinear optimal control problems. In: Proceedings of the AIAA Guidance, Navigation and Control Conference. San Francisco, CA (2005)
    46.Fahroo, F., Ross, I.M.: Pseudospectral methods for infinite-horizon nonlinear optimal control problems. J. Guid. Control Dyn. 31(4), 927–936 (2008)CrossRef
    47.Ross, I., Fahroo, F.: A pseudospectral transformation of the covectors of optimal control systems. In: Proceedings of the First IFAC Symposium on System Structure and Control, Prague, Czech Republic, pp. 29–31 (2001)
    48.Fahroo, F., Ross, I.M.: Costate estimation by a Legendre pseudospectral method. AIAA J. Guid. Control Dyn. 24(2), 270–277 (2001)CrossRef
    49.Ross, I.M., Fahroo, F.: Legendre pseudospectral approximations of optimal control problems. In: Kang, W., et al. (eds.) Lecture Notes in Control and Information Sciences, vol. 295, pp. 327–342. Springer, New York (2003)
    50.Fahroo, F., Ross, I.M.: Direct trajectory optimization by a Chebyshev pseudospectral method. AIAA J. Guid. Control Dyn. 25(1), 160–166 (2002)CrossRef
    51.Gong, Q., Ross, I.M., Fahroo, F.: A Chebyshev pseudospectral method for nonlinear constrained optimal control problems. In: Proceedings of the 48th IEEE Conference on Decision and Control., pp. 5057–5062. Shanghai, China (2009)
    52.Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50(1), 67–87 (2008)MathSciNet CrossRef MATH
    53.Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, New York (2001)MATH
    54.Gong, Q., Kang, W., Ross, I.M.: A pseudospectral method for the optimal control of constrained feedback linearizable systems. IEEE Trans. Autom. Control 51(7), 1115–1129 (2006)MathSciNet CrossRef
    55.Hager, W.W.: Numerical analysis in optimal control. In: International Series of Numerical Mathematics, vol. 139, pp. 83–93. Birkhäuser (2001)
    56.Kang, W., Gong, Q., Ross, I.M.: Convergence of pseudospectral methods for a class of discontinuous optimal control. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 2799–2804. Seville, Spain (2005)
    57.Kang, W., Gong, Q., Ross, I., Fahroo, F.: On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems. Int. J. Robust Nonlinear Control 17(14), 1251–1277 (2007)MathSciNet CrossRef MATH
    58.Kang, W.: Rate of convergence for the Legendre pseudospectral optimal control of feedback linearizable systems. J. Control Theory Appl. 8(4), 391–405 (2010)MathSciNet CrossRef MATH
    59.Astolfi, A., Marconi, L. (eds.): Analysis and Design of Nonlinear Control Systems: In Honor of Alberto Isidori, pp. 109–124. Springer, Berlin, Heidelberg (2008)
    60.Boucher, R., Kang, W., Gong, Q.: Galerkin optimal control for constrained nonlinear problems. In: Proceedings of the 2014 American Control Conference, pp. 2432–2437. Portland, OR (2014)
    61.Boucher, R., Kang, W., Gong, Q.: Feasibility of the Galerkin optimal control method. In: Proceedings of the 53rd IEEE Conference on Decision and Control. Los Angeles, CA (2014)
    62.Hartl, R.F., Sethi, S.P., Vickson, R.G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37(2), 181–218 (1995)MathSciNet CrossRef MATH
    63.Vinter, R.: Optimal Control. Springer Science & Business Media, Berlin (2010)CrossRef MATH
    64.Ross, I.M., Fahroo, F.: Pseudospectral knotting methods for solving nonsmooth optimal control problems. J. Guid. Control Dyn. 27(3), 397–405 (2004)CrossRef
    65.Gong, Q., Fahroo, F., Ross, I.M.: Spectral algorithm for pseudospectral methods in optimal control. J. Guid. Control Dyn. 31(3), 460–471 (2008)MathSciNet CrossRef
    66.Williams, P.: Jacobi pseudospectral method for solving optimal control problems. AIAA J. Guid. Control Dyn. 27(2), 293–297 (2004)CrossRef
    67.Cullum, J.: Finite-dimensional approximations of state-constrained continuous optimal control problems. SIAM J. Control 10(4), 649–670 (1972)MathSciNet CrossRef MATH
    68.Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory, vol. 330. Springer, Berlin (2006)
    69.Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. II: Applications, vol. 331. Springer, Berlin (2006)
    70.Pontraygin, L.S.: The Mathematical Theory of Optimal Processes. Interscience Publishers, New York (1962)
    71.Ross, I.M.: A historical introduction to the covector mapping principle. Adv. Astronaut. Sci. 123, 1257–1278 (2006)
    72.Gong, Q., Ross, I.M., Kang, W., Fahroo, F.: Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control. Comput. Optim. Appl. 41(3), 307–335 (2008)MathSciNet CrossRef MATH
    73.Carpenter, M.H., Gottlieb, D.: Spectral methods on arbitrary grids. J. Comput. Phys. 129(1), 74–86 (1996)MathSciNet CrossRef MATH
    74.Bosarge, W.E., Johnson, O.G., Mcknight, R.S., Timlake, W.P.: The Ritz–Galerkin procedure for nonlinear control problems. SIAM J. Numer. Anal. 10(1), 94–111 (1973)MathSciNet CrossRef MATH
    75.Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods in fluid dynamics. Springer, Berlin (1988)CrossRef MATH
  • 作者单位:Qi Gong (1)
    Isaac Michael Ross (2)
    Fariba Fahroo (3)

    1. Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA, 95064, USA
    2. Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, CA, 93943, USA
    3. Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA, 93943, USA
  • 刊物主题:Calculus of Variations and Optimal Control; Optimization; Optimization; Theory of Computation; Applications of Mathematics; Engineering, general; Operations Research/Decision Theory;
  • 出版者:Springer US
  • ISSN:1573-2878
  • 卷排序:169
文摘
In advancing our prior work on a unified theory for pseudospectral (PS) optimal control, we present the mathematical foundations for spectral collocation over arbitrary grids. The computational framework is not based on any particular choice of quadrature nodes associated with orthogonal polynomials. Because our framework applies to non-Gaussian grids, a number of hidden properties are uncovered. A key result of this paper is the discovery of the dual connections between PS and Galerkin approximations. Inspired by Polak’s pioneering work on consistent approximation theory, we analyze the dual consistency of PS discretization. This analysis reveals the hidden relationship between Galerkin and pseudospectral optimal control methods while uncovering some finer points on covector mapping theorems. The new theory is used to demonstrate via a numerical example that a PS method can be surprisingly robust to grid selection. For example, even when 60 % of the grid points are chosen to be uniform—the worst possible selection from a pseudospectral perspective—a PS method can still produce satisfactory result. Consequently, it may be possible to choose non-Gaussian grid points to support different resolutions over the same grid. Keywords Optimal control Pseudospectral Computation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700