用户名: 密码: 验证码:
Preparation and characterization of novel hydrophobic cellulose fabrics with polyvinylsilsesquioxane functional coatings
详细信息    查看全文
  • 作者:Dongzhi Chen ; Fengxiang Chen ; Hongwei Zhang ; Xianze Yin ; Yingshan Zhou
  • 关键词:Cellulose fabrics ; Functional coating ; Morphologies ; Thermal properties ; Hydrophobicity
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:941-953
  • 全文大小:2,655 KB
  • 参考文献:Abe Y, Kagayama K, Takamura N, Gunji T, Yoshihara T, Takahashi N (2000) Preparation and properties of polysilsesquioxanes. Function and characterization of coating agents and films. J Non-Cryst Solids 261:39–51. doi:10.​1016/​S0022-3093(99)00614-6 CrossRef
    Alongi J, Ciobanu M, Malucelli G (2011a) Cotton fabrics treated with hybrid organic–inorganic coatings obtained through dual-cure processes. Cellulose 18:1335–1348. doi:10.​1007/​s10570-011-9564-5 CrossRef
    Alongi J, Ciobanu M, Malucelli G (2011b) Sol–gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: optimisation of the process and evaluation of the durability. Cellulose 18:167–177. doi:10.​1007/​s10570-010-9470-2 CrossRef
    Alongi J, Ciobanu M, Malucelli G (2012) Thermal stability, flame retardancy and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol–gel processes. Carbohydr Polym 87:2093–2099. doi:10.​1016/​j.​carbpol.​2011.​10.​032 CrossRef
    Basu BJ, Dinesh Kumar V, Anandan C (2012) Surface studies on superhydrophobic and oleophobic polydimethylsiloxane–silica nanocomposite coating system. Appl Surf Sci 261:807–814. doi:10.​1016/​j.​apsusc.​2012.​08.​103 CrossRef
    Brewer SA, Willis CR (2008) Structure and oil repellency: textiles with liquid repellency to hexane. Appl Surf Sci 254:6450–6454. doi:10.​1016/​j.​apsusc.​2008.​04.​053 CrossRef
    Caschera D, Cortese B, Mezzi A, Brucale M, Ingo GM, Gigli G, Padeletti G (2013) Ultra hydrophobic/superhydrophilic modified cotton textiles through functionalized diamond-like carbon coatings for self-cleaning applications. Langmuir 29:2775–2783. doi:10.​1021/​la305032k CrossRef
    Chen S, Chen S, Jiang S, Xiong M, Luo J, Tang J, Ge Z (2011) Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine. ACS Appl Mater Interfaces 3:1154–1162. doi:10.​1021/​am101275d CrossRef
    Chen D, Hu X, Zhang H, Yin X, Zhou Y (2015) Preparation and properties of novel polydimethylsiloxane composites using polyvinylsilsesquioxanes as reinforcing agent. Polym Degrad Stab 111:124–130. doi:10.​1016/​j.​polymdegradstab.​2014.​10.​026 CrossRef
    Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58:417–420. doi:10.​1016/​j.​carbpol.​2004.​08.​005 CrossRef
    Deng Z-Y, Wang W, Mao L-H, Wang C-F, Chen S (2014) Versatile superhydrophobic and photocatalytic films generated from TiO2-SiO2@PDMS and their applications on fabrics. J Mater Chem A 2:4178–4184. doi:10.​1039/​C3TA14942K CrossRef
    Duan W, Xie A, Shen Y, Wang X, Wang F, Zhang Y, Li J (2011) Fabrication of superhydrophobic cotton fabrics with UV protection based on CeO2 particles. Ind Eng Chem Res 50:4441–4445. doi:10.​1021/​ie101924v CrossRef
    El-Shafei A, Abou-Okeil A (2011) ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydr Polym 83:920–925. doi:10.​1016/​j.​carbpol.​2010.​08.​083 CrossRef
    El-Shafei A, ElShemy M, Abou-Okeil A (2015) Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties. Carbohydr Polym 118:83–90. doi:10.​1016/​j.​carbpol.​2014.​11.​007 CrossRef
    Ferrero F, Periolatto M (2013) Application of fluorinated compounds to cotton fabrics via sol–gel. Appl Surf Sci 275:201–207. doi:10.​1016/​j.​apsusc.​2013.​01.​001 CrossRef
    Fortess F (1954) Silicone resins in textiles. Ind Eng Chem 46:2325–2331. doi:10.​1021/​ie50539a035 CrossRef
    Gao Q, Zhu Q, Guo Y, Yang CQ (2009) Formation of highly hydrophobic surfaces on cotton and polyester fabrics using silica sol nanoparticles and nonfluorinated alkylsilane. Ind Eng Chem Res 48:9797–9803. doi:10.​1021/​ie9005518 CrossRef
    Gao Y, He CL, Huang YG, Qing FL (2010) Novel water and oil repellent POSS-based organic/inorganic nanomaterial: preparation, characterization and application to cotton fabrics. Polymer 51:5997–6004. doi:10.​1016/​j.​polymer.​2010.​10.​020 CrossRef
    Georgakilas V, Bourlinos AB, Zboril R, Trapalis C (2008) Synthesis, characterization and aspects of superhydrophobic functionalized carbon nanotubes. Chem Mater 20:2884–2886. doi:10.​1021/​cm7034079 CrossRef
    Hong KH (2014) Preparation and properties of multifunctional cotton fabrics treated by phenolic acids. Cellulose 21:2111–2117. doi:10.​1007/​s10570-014-0214-6 CrossRef
    Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714. doi:10.​1021/​nl903949m CrossRef
    Hyde GK, Scarel G, Spagnola JC, Peng Q, Lee K, Gong B, Roberts KG, Roth KM, Hanson CA, Devine CK, Stewart SM, Hojo D, Na J-S, Jur JS, Parsons GN (2010) Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics. Langmuir 26:2550–2558. doi:10.​1021/​la902830d CrossRef
    Kwak WG, Oh MH, Gong MS (2015) Preparation of silver-coated cotton fabrics using silver carbamate via thermal reduction and their properties. Carbohydr Polym 115:317–324. doi:10.​1016/​j.​carbpol.​2014.​08.​070 CrossRef
    Lee M, Kwak G, Yong K (2011) Wettability control of ZnO nanoparticles for universal applications. ACS Appl Mater Interfaces 3:3350–3356. doi:10.​1021/​am2004762 CrossRef
    Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24:5585–5590. doi:10.​1021/​la800157t CrossRef
    Li G, Wang H, Zheng H, Bai R (2010) A facile approach for the fabrication of highly stable superhydrophobic cotton fabric with multi-walled carbon nanotubes–azide polymer composites. Langmuir 26:7529–7534. doi:10.​1021/​la904337z CrossRef
    Liu YY, Xin JH, Choi CH (2012) Cotton fabrics with single-faced superhydrophobicity. Langmuir 28:17426–17434. doi:10.​1021/​la303714h CrossRef
    Ma WS, Zhang DQ, Duan Y, Wang H (2013) Highly monodisperse polysilsesquioxane spheres: synthesis and application in cotton fabrics. J Colloid Interface Sci 392:194–200. doi:10.​1016/​j.​jcis.​2012.​08.​071 CrossRef
    Mark JE (2004) Some interesting things about polysiloxanes. Acc Chem Res 37:946–953. doi:10.​1021/​ar030279z CrossRef
    Mohamed AL, El-Sheikh MA, Waly AI (2014) Enhancement of flame retardancy and water repellency properties of cotton fabrics using silanol based nano composites. Carbohydr Polym 102:727–737. doi:10.​1016/​j.​carbpol.​2013.​10.​097 CrossRef
    Muresan EI, Balan G, Popescu V (2013) Durable hydrophobic treatment of cotton fabrics with glycidyl stearate. Ind Eng Chem Res 52:6270–6276. doi:10.​1021/​ie400235u CrossRef
    Nateghi MR, Shateri-Khalilabad M (2015) Silver nanowire-functionalized cotton fabric. Carbohydr Polym 117:160–168. doi:10.​1016/​j.​carbpol.​2014.​09.​057 CrossRef
    Nehra S, Hanumansetty S, O’Rear EA, Dahiya JB (2014) Enhancement in flame retardancy of cotton fabric by using surfactant-aided polymerization. Polym Degrad Stab 109:137–146. doi:10.​1016/​j.​polymdegradstab.​2014.​07.​002 CrossRef
    Pan HF, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via layer-by-layer assembly of chitin derivatives. Carbohydr Polym 115:516–524. doi:10.​1016/​j.​carbpol.​2014.​08.​084 CrossRef
    Park EJ, Sim JK, Jeong M-G, Seo HO, Kim YD (2013) Transparent and superhydrophobic films prepared with polydimethylsiloxane-coated silica nanoparticles. RSC Adv 3:12571–12576. doi:10.​1039/​c3ra42402b CrossRef
    Periolatto M, Ferrero F, Montarsolo A, Mossotti R (2013) Hydrorepellent finishing of cotton fabrics by chemically modified TEOS based nanosol. Cellulose 20:355–364. doi:10.​1007/​s10570-012-9821-2 CrossRef
    Preda N, Enculescu M, Zgura I, Socol M, Matei E, Vasilache V, Enculescu I (2013) Superhydrophobic properties of cotton fabrics functionalized with ZnO by electroless deposition. Mater Chem Phys 138:253–261. doi:10.​1016/​j.​matchemphys.​2012.​11.​054 CrossRef
    Qi K, Xin JH (2010) Room-temperature synthesis of single-phase anatase TiO2 by aging and its self-cleaning properties. ACS Appl Mater Interfaces 2:3479–3485. doi:10.​1021/​am1005892 CrossRef
    Reddy N, Salam A, Yang YQ (2008) Effect of structures and concentrations of softeners on the performance properties and durability to laundering of cotton fabrics. Ind Eng Chem Res 47:2502–2510. doi:10.​1021/​ie071564f CrossRef
    Roy N, Bhowmick AK (2010) Novel in situ polydimethylsiloxane-sepiolite nanocomposites: structure-property relationship. Polymer 51:5172–5185. doi:10.​1016/​j.​polymer.​2010.​08.​064 CrossRef
    Sadr FA, Montazer M (2014) In situ sonosynthesis of nano TiO2 on cotton fabric. Ultrason Sonochem 21:681–691. doi:10.​1016/​j.​ultsonch.​2013.​09.​018 CrossRef
    Shahidi S, Ghoranneviss M, Moazzenchi B, Anvari A, Rashidi A (2007) Aluminum coatings on cotton fabrics with low temperature plasma of argon and oxygen. Surf Coat Technol 201:5646–5650. doi:10.​1016/​j.​surfcoat.​2006.​07.​105 CrossRef
    Shateri-Khalilabad M, Yazdanshenas ME (2013) Fabricating electroconductive cotton textiles using graphene. Carbohydr Polym 96:190–195. doi:10.​1016/​j.​carbpol.​2013.​03.​052 CrossRef
    Takamura N, Gunji T, Hatano H, Abe Y (1999) Preparation and properties of polysilsesquioxanes: polysilsesquioxanes and flexible thin films by acid-catalyzed controlled hydrolytic polycondensation of methyl- and vinyltrimethoxysilane. J Polym Sci Part A Polym Chem 37:1017–1026. doi:10.​1002/​(SICI)1099-0518(19990401)37:​7<1017:​AID-POLA16>3.​0.​CO;2-F CrossRef
    Wang R, Wang X, Xin JH (2009) Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts. ACS Appl Mater Interfaces 2:82–85. doi:10.​1021/​am900588s CrossRef
    Wang L, Zhang X, Li B, Sun P, Yang J, Xu H, Liu Y (2011) Superhydrophobic and ultraviolet-blocking cotton textiles. ACS Appl Mater Interfaces 3:1277–1281. doi:10.​1021/​am200083z CrossRef
    Wang L, Xi GH, Wan SJ, Zhao CH, Liu XD (2014) Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate. Cellulose 21:2983–2994. doi:10.​1007/​s10570-014-0275-6 CrossRef
    Wu Z, Wang H, Tian X, Xue M, Ding X, Ye X, Cui Z (2014) Surface and mechanical properties of hydrophobic silica contained hybrid films of waterborne polyurethane and fluorinated polymethacrylate. Polymer 55:187–194. doi:10.​1016/​j.​polymer.​2013.​11.​019 CrossRef
    Xie K, Gao A, Zhang Y (2013) Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen. Carbohydr Polym 98:706–710. doi:10.​1016/​j.​carbpol.​2013.​06.​014 CrossRef
    Xiong DA, Liu GJ, Duncan EJS (2012) Diblock-copolymer-coated water- and oil-repellent cotton fabrics. Langmuir 28:6911–6918. doi:10.​1021/​la300634v CrossRef
    Xu LH, Zhuang W, Xu B, Cai ZS (2011) Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization. Appl Surf Sci 257:5491–5498. doi:10.​1016/​j.​apsusc.​2010.​12.​116 CrossRef
    Yang Z, Wang X, Lei D, Fei B, Xin JH (2012) A durable flame retardant for cellulosic fabrics. Polym Degrad Stab 97:2467–2472. doi:10.​1016/​j.​polymdegradstab.​2012.​05.​023 CrossRef
    Yilgor E, Eynur T, Kosak C, Bilgin S, Yilgor I, Malay O, Menceloglu Y, Wilkes GL (2011) Fumed silica filled poly(dimethylsiloxane-urea) segmented copolymers: preparation and properties. Polymer 52:4189–4198. doi:10.​1016/​j.​polymer.​2011.​07.​041 CrossRef
    Yuan H, Xing W, Zhang P, Song L, Hu Y (2012) Functionalization of cotton with UV-cured flame retardant coatings. Ind Eng Chem Res 51:5394–5401. doi:10.​1021/​ie202468u CrossRef
    Zhao JM, Deng B, Lv M, Li JY, Zhang YJ, Jiang HQ, Peng C, Li J, Shi JY, Huang Q, Fan CH (2013) Graphene oxide-based antibacterial cotton fabrics. Adv Healthc Mater 2:1259–1266. doi:10.​1002/​adhm.​201200437 CrossRef
    Zhou H, Wang H, Niu H, Gestos A, Wang X, Lin T (2012) Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv Mater 24:2409–2412. doi:10.​1002/​adma.​201200184 CrossRef
    Zia KM, Tabassum S, Barkaat-ul-Hasin S, Zuber M, Jamil T, Jamal MA (2011) Preparation of rich handles soft cellulosic fabric using amino silicone based softener. Part-I: surface smoothness and softness properties. Int J Biol Macromol 48:482–487. doi:10.​1016/​j.​ijbiomac.​2011.​01.​011 CrossRef
  • 作者单位:Dongzhi Chen (1)
    Fengxiang Chen (1) (2)
    Hongwei Zhang (1)
    Xianze Yin (1)
    Yingshan Zhou (1)

    1. School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, People’s Republic of China
    2. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, 430062, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
A series of novel hydrophobic cotton fabrics with polyvinylsilsesquioxane (PVS) polymer functional coatings were successfully prepared by solution immersion. The influence of the added amount of PVS polymer on the morphology, resistance to thermal and thermooxidative degradation, and hydrophobic properties of the treated cotton fabrics was studied by attenuated total reflection infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and water contact angle measurements, respectively. The experimental results show that the PVS polymer formed a protective film on the surface of the cotton fibers; the resistance to thermal and thermooxidative degradation, and the water-repellent properties of the novel cotton fabrics were also improved with increasing added amount of PVS polymer, compared with that of reference material. The enhancement in the thermal properties of the treated cotton fabrics can likely be attributed to synergistic carbonization between the PVS protective layer and the cellulose fibers during thermal degradation. Meanwhile, it was also found that, with increasing added amount of PVS polymer, the hydrophobicity of the treated cotton fabrics was greatly improved. The noticeable improvement in the hydrophobicity of the treated cotton fabrics is ascribed to the combination of low-surface-energy PVS film and the intrinsically rough surface of the woven cotton fabrics. This strategy for fabricating novel cellulose fabrics provides a guide for the development of high-performance functional cellulose fabrics with tunable properties in the textile industry. Keywords Cellulose fabrics Functional coating Morphologies Thermal properties Hydrophobicity

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700