用户名: 密码: 验证码:
Effects of Interplanetary Shock Inclinations on Nightside Auroral Power Intensity
详细信息    查看全文
  • 作者:D. M. Oliveira ; J. Raeder ; B. T. Tsurutani ; J. W. Gjerloev
  • 关键词:Space physics ; Ionosphere ; magnetosphere interaction ; Plasma physics
  • 刊名:Brazilian Journal of Physics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:46
  • 期:1
  • 页码:97-104
  • 全文大小:557 KB
  • 参考文献:1.B Abraham-Shrauner, Determination of magne-tohydronamic shock normals, J. Geophys. Res. 77(4), 736–739 (1972). doi:10.​1029/​JA077i004p00736
    2.B. Abraham-Shrauner, S. H. Yun, Inter-planetary shocks seen by Ames Plasma Probe on Pi-oneer 6 and 7, J. Geophys. Res. 81(13), (1976). doi:10.​1029/​JA081i013p02097
    3.S.-I. Akasofu, J. Chao, Interplanetary shock waves and magnetospheric substorms. Planet. Space Sci. 28(4), 381–385 (1980). doi:10.​1016/​0032-0633(80)90042-2 CrossRef ADS
    4.L. Bolduc, GIC observations and studies in the Hydro-Québec power system. J. Atmos. Sol. Terr. Phys. 64(16), 1793–1802 (2002). doi:10.​1016/​S1364-6826(02)00128-1 CrossRef ADS
    5.D.S. Colburn, C.P. Sonett, Discontinuities in the solar wind. Space Sci. Rev. 439(A11), 506 (1966). doi:10.​1007/​BF00240575
    6.J.D. Craven, L.A. Frank, C.T. Russell, E.E. Smith, R.P. Lepping, Global auroral responses to magnetospheric compressions by shocks in the solar wind: two case studies, in Solar Wind-Magnetosphere Coupling, ed. by Y. Kamide, J.A. Slavin (Terra Scientific, Tokyo, Japan, 1986), pp. 367–380CrossRef
    7.T.N. Davis, M. Sugiura, Auroral elec-trojet activity index AE and its universal time variations. J. Geophys. Res. 71(3), 785–801 (1966). doi:10.​1029/​JZ071i003p00785 CrossRef ADS
    8.E. Echer, W.D. Gonzalez, L.E.A. Vieira, A.D.L.F.L. Guarnieri, A. Prestes, A.L.C. Gonzalez, N.J. Schuch, Interplanetary shock parameters during solar activity maximum (2000) and minimum (1995-1996). Braz. J. Phys. 33(1), 2301 (2003). doi:10.​1590/​S0103-9733200300010001​0 CrossRef
    9.E. Echer, B. Tsurutani, F. Guarnieri, J. Kozyra, Interplanetary fast forward shocks and their geomagnetic effects: CAWSES events. J. Atmos. Sol. Terr. Phys. 73(11-12), 1330–1338 (2011). doi:10.​1016/​j.​jastp.​2010.​09.​020 CrossRef ADS
    10.I.A. Erinmez, J.G. Kappenman, W.A. Radasky, Management of the geomagnetically induced current risks on the national grid company’s electric power transmission system. J. Atmos. Sol. Terr. Phys. 63(5–6), 743–756 (2002). doi:10.​1016/​S1364-6826(02)00036-6 CrossRef ADS
    11.J.W. Gjerloev, A global ground-based magneto-meter initiative. Eos Trans. AGU 90(27), 230–231 (2009). doi:10.​1029/​2009EO270002 CrossRef ADS
    12.J. W. Gjerloev, The SuperMAG data processing technique, J. Geophys. Res. 117(A09213), 1–19 (2012). doi:10.​1029/​2012JA017683
    13.W.D. Gonzalez, B.T. Tsurutani, A.L. Clúade Gonzalez, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88(3-4), 529–562 (1999). doi:10.​1023/​A:​1005160129098 CrossRef ADS
    14.R.A. Gummow, P. Eng, GIC effects on pipeline corrosion and corrosion control systems. J. Atmos. Sol. Terr. Phys. 64(16), 1755–1764 (2002). doi:10.​1016/​S1364-6826(02)00125-6 CrossRef ADS
    15.X.-C. Guo, Y.-Q. Hu, C. Wang, Earth’s magnetosphere impinged by interplanetary shocks of different orientations. Chin. Phys. Lett. 22(12), 3221–3224 (2005). doi:10.​1088/​0256-307X/​22/​12/​067 CrossRef ADS
    16.A.J. Halford, S.L. McGregor, K.R. Murphy, R.M. Millan, M.K. Hudson, L.A. Woodger, C.A. Cattel, A.W. Breneman, I.R. Mann, W.S. Kurth, G.B. Hospodarsky, M. Gkioulidou, J.F. Fennell, BARREL observations of an ICME-shock impact with the magnetosphere and the resultant radiation belt electron loss. J. Geophys. Res. 120(4), 2557–2570 (2015). doi:10.​1002/​2014JA020873 CrossRef
    17.J. Kappenman, Geomagnetic storms and their impacts on the US power grid, Tech. rep (Metatech Corp, Goleta, 2010)
    18.K. Kawasaki, S.-I. Akasofu, F. Yasuhara, C.-I. Meng, Storm sudden commencements and polar magnetic substorms. J. Geophys. Res. 76, 6781–6789 (1971). doi:10.​1029/​JA076i028p06781 CrossRef ADS
    19.S. Kokubun, R.L. McPherron, C.T. Russell, Triggering of substorms by solar wind discontinuities. J. Geophys. Res. 82(1), 74–86 (1977). doi:10.​1029/​JA082i001p00074 CrossRef ADS
    20.K. Liou, P. T. Newell, C.-I. Meng, C.-C. Wu, R. P. Lepping, Investigation of external triggering of substorms with Polar ultraviolet imager observations, J. Geophys. Res. 108(A10), (2003). doi:10.​1029/​2003JA009984
    21.J.-J. Liu, H.-Q. Hu, D.-S. Han, Z.-Y. Xing, Z.-J. Hu, D.-H. Huang, H.-G. Yang, Response of nightside aurora to interplanetary shock from ground optical observation. Chin. J. Geophys 56(5), 598–611 (2013). doi:10.​1002/​cjg2.​20056 CrossRef
    22.A.T.Y. Lui, R.E. Lopez, S.M. Krimigis, R.W. McEntire, L.J. Zanetti, T.A. Potemra, A case study of magnetotail current sheet disruption and diversion. Geophys. Res. Lett. 15(7), 721–724 (1988). doi:10.​1029/​GL015i007p00721 CrossRef ADS
    23.A.T.Y. Lui, A. Mankofsky, C.-L. Chang, K. Papadopoulos, C.S. Wu, A current disruption mechanism in the neutral sheet: a possible trigger for substorm expansions. J. Geophys. Res. 17(6), 745–748 (1990). doi:10.​1029/​GL017i006p00745
    24.L.R. Lyons, A new theory for magnetospheric substorms. J. Geophys. Res. 100(A10), 19,069–19,081 (1995). doi:10.​1029/​95JA01344 CrossRef ADS
    25.L.R. Lyons, Substorms: fundamental observational features, distinction from other disturbances, and external triggering. J. Geophys. Res. 101(A6), 13,011–13,025 (1996). doi:10.​1029/​95JA01987 CrossRef ADS
    26.P.T. Newell, G. W. Gjerloev, SuperMAG-based partial ring current indices. J. Geophys. Res. 117(A05215), 1–19 (2012). doi:10.​1029/​2012JA017586
    27.P. T. Newell, J. W. Gjerloev, Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res. 116(A12211), 1–12 (2011). doi:10.​1029/​2011JA016779
    28.P. T. Newell, J. W. Gjerloev, Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices, J. Geophys. Res. 116(A12211), 1–12 (2011). doi:10.​1029/​2011JA016936
    29.P.T. Newell, J.W. Gjerloev, Local geomagnetic indices and the prediction of auroral power. J. Geophys. Res. 119(12), 9790–9803 (2014). doi:10.​1002/​2014JA020524 CrossRef
    30.S.Y. Oh, Y. Yi, Y.H. Kim, Solar cycle variation of the interplanetary forward shock drivers observed at 1 AU. Sol. Phys. 245(2), 391–410 (2007). doi:10.​1007/​s11207-007-9042-2 CrossRef ADS
    31.D. M. Oliveira, A study of interplanetary shock geoeffectiveness controlled by impact angles using simulations and observations, Ph.D. thesis, University of New Hampshire (2015)
    32.D.M. Oliveira, J. Raeder, Impact angle control of interplanetary shock geoeffectiveness. J. Geophys. Res. 119(10), 8188–8201 (2014). doi:10.​1002/​2014JA020275 CrossRef
    33.D.M. Oliveira, J. Raeder, Impact angle control of interplanetary shock geoeffectiveness: a statistical study. J. Geophys. Res. 120(6), 4313–4323 (2015). doi:10.​1002/​2015JA021147 CrossRef
    34.K. Papadopoulos, The role of microturbulence on collisionless reconnection, in Dynamics of the Magnetosphere, ed. by S.-I. Akasofu, Astrophysics and Space Science Library 78, (Springer Netherlands, Amsterdam, The Netherlands, 1979), pp. 289-309, doi:10.​1007/​978-94-009-9519-214
    35.V.J. Pizzo, The evolution of corotating stream fronts near the ecliptic plane in the inner solar system: 2.Three-dimensional tilted-dipole fronts. J. Geophys. Res. 96(A4), 5405–5420 (1991). doi:10.​1029/​91JA00155 CrossRef ADS
    36.J. Raeder. Global Magnetohydrodynamics: a Tutorial Review, in Space Plasma Simulation, ed. by J. Buchner, C. T. Dum, and M. Scholer, (Springer Verlag, Berlin Heilderberg, New York, 2003), pp. 1–20. doi:10.​1007/​3-540-36530-311
    37.A.K. Richter, K.C. Hsieh, A.H. Luttrell, E. Marsch, R. Schwenn, Review of interplanetary shock phenomena near and within 1 AU, in Collisionless Shocks in the Heliosphere: Reviews of Current Research, in Geophys. Monogr. Ser. 35, ed. by B.T. Tsurutani, R.G. Stone (American Geophysical Union, Washington, D.C., 1985), pp. 33–50. doi:10.​1029/​GM035p0033
    38.A.A. Samsonov, Numerical MHD modeling of the Earth’s magnetosheath for different IMF orientations. Adv. Space Res. 36, 1652–1656 (2006). doi:10.​1016/​j.​bbr.​2011.​03.​031 CrossRef ADS
    39.A. A. Samsonov, Propagation of inclined inter-planetary shock through the magnetosheath, J. Atmos.Sol. Terr. Phys. 73, 1–9 (2011). doi:10.​1016/​j.​bbr.​2011.​03.​031
    40.A. A. Samsonov, D. G. Sibeck, J. Imber, MHD simulation for the interaction of an interplanetary shock with the Earth’s magnetosphere, J. Geophys. Res. 112(A12220), 1–9 (2007). doi:10.​1029/​2007JA012627
    41.A.A. Samsonov, V.A. Sergeev, M.M. Kuznetsova, D.G. Sibeck, Asymmetric magnetospheric compressions and expansions in response to impact of inclined interplanetary shock. Geophys. Res. Lett. 42(12), 4716–4722 (2015). doi:10.​1002/​2015GL064294 CrossRef ADS
    42.J. Schieldge, G. Siscoe, A correlation of the occurrence of simultaneous sudden magnetospheric compressions and geomagnetic bay onsets with selected geophysical indices. J. Atmos. Sol. Terr. Phys. 32(11), 1819–1830 (1970). doi:10.​1016/​0021-9169(70)90139-X CrossRef ADS
    43.C.J. Schrijver, R. Dobbins, W. Murtagh, S.M. Petrinec, Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment. Space Weather (2014). doi:10.​1002/​2014SW001066
    44.G.L. Siscoe, Three-dimensional aspects of interplanetary shock waves. J. Geophys. Res. 81(34), 6235–6241 (1976). doi:10.​1029/​JA081i034p06235 CrossRef ADS
    45.E.J. Smith, J.A. Slavin, R.D. Zwickl, S.J. Bame, Shocks and storm sudden commencements, in Solar Wind and Magnetosphere Coupling, ed. by Y. Kamide, J.A. Slavin (Terra Scientific, Tokyo, 1986), p. 345CrossRef
    46.T. Takeuchi, C.T. Russell, T. Araki, Effect of the orientation of interplanetary shock on the geomagnetic sudden commencement. J. Geophys. Res. 107(A12), 1423 (2002). doi:10.​1029/​2002JA009597 CrossRef
    47.B. Tsurutani, G. Lakhina, O. Verkhoglyadova, W. Gonzalez, E. Echer, F. Guarnieri, A review of interplanetary discontinuities and their geomagnetic effects. J. Atmos. Sol. Terr. Phys. 73(1), 5–19 (2011). doi:10.​1016/​j.​jastp.​2010.​04.​001 CrossRef ADS
    48.B. T. Tsurutani, X. Y. Zhou, Interplane-tary shock triggering of substorms: Wind and Polar, Adv. Space Res. 31(4), 1063–1067 (2003). doi:10.​1016/​S0273-1177(02)00796-2
    49.C. Wang, Z. H. Huang, Y. Q. Hu, X. C. Guo, 3D global simulation of the interaction of interplanetary shocks with the magnetosphere, in 4th Annual IGPP In-ternational Astrophysics Conference on the Physics of Collisionless Shocks, edited by G. Li, G. Zank, and C. T. Russell, (AIP Conference Proceedings, Am. Inst. of Phys., Washington, D.C., 2005) pp. 320-324. doi:10.​1063/​1.​2032716
    50.C. Wang, C. X. Li, Z. H. Huang, J. D. Richardson, Effect of interplanetary shock strengths and orientations on storm sudden commencement rise times, Geophys. Res. Lett. 33(L14104), 1–3 (2006). doi:10.​1029/​2006GL025966
    51.C. Yue, Q. G. Zong, H. Zhang, Y. F. Wang, C. J. Yuan, Z. Y. Pu, S. Y. Fu, A. T. Y. Lui, B. Yang, C. R. Wang, Geomagnetic activity triggered by interplanetary shocks, J. Geophys. Res. 115(A00I05), 1–13 (2010). doi:10.​1029/​2010JA015356
    52.X. Zhou, B.T. Tsurutani, Interplanetary shock triggering of nightside geomagnetic activity: substorms, pseudobreakups, and quiescent events. J. Geophys. Res. 106(A9), 18,957–18,967 (2001). doi:10.​1029/​2000JA003028 CrossRef ADS
    53.X.-Y. Zhou, B.T. Tsurutani, Rapid intensification and propagation of the dayside aurora: large scale interplanetary pressure pulses (fast shocks). Geophys. Res. Lett. 26(8), 1097–1100 (1999). doi:10.​1029/​1999GL900173 CrossRef ADS
    54.Q.-G. Zong, X.-Z. Zhou, Y. F. Wang, X. Li, P. Song, D. N. Baker, T. A. Fritz, P. W. Daly, M. Dunlop, A. Pedersen, Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt, J. Geophys. Res. 114(A10204), 1–11 (2009). doi:10.​1029/​2009JA014393
  • 作者单位:D. M. Oliveira (1) (2)
    J. Raeder (3)
    B. T. Tsurutani (4)
    J. W. Gjerloev (5) (6)

    1. NASA Goddard Space Flight Center, Greenbelt, MD, USA
    2. Goddard Planetary Heliophysics Institute, University of Maryland Baltimore County, Baltimore, MD, USA
    3. EOS Space Science Center and Department of Physics, University of New Hampshire, Durham, NH, USA
    4. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
    5. Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
    6. Birkeland Centre of Excellence, University of Bergen, Bergen, Norway
  • 刊物类别:Physics and Astronomy
  • 出版者:Springer New York
  • ISSN:1678-4448
文摘
We derive fast forward interplanetary (IP) shock speeds and impact angles to study the geoeffectiveness of 461 IP shocks that occurred from January 1995 to December 2013 using ACE and Wind spacecraft data. The geomagnetic activity is inferred from the SuperMAG project data. SuperMAG is a large chain which employs more than 300 ground stations to compute enhanced versions of the traditional geomagnetic indices. The SuperMAG auroral electroject SME index, an enhanced version of the traditional AE index, is used as an auroral power (AP) indicator. AP intensity jumps triggered by shock impacts are correlated with both shock speed and impact angle. It is found that high AP intensity events typically occur when high speed IP shocks impact the Earth’s magnetosphere with the shock normal almost parallel to the Sun-Earth line. This result suggests that symmetric and strong magnetospheric compression leads to favorable conditions for intense auroral power release, as shown previously by simulations and observations. Some potential mechanisms will be discussed. Keywords Space physics Ionosphere-magnetosphere interaction Plasma physics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700