用户名: 密码: 验证码:
A genome-wide association study using international breeding-evaluation data identifies major loci affecting production traits and stature in the Brown Swiss cattle breed
详细信息    查看全文
  • 作者:Jiazhong Guo (1) (2)
    Hossein Jorjani (3)
    ?rjan Carlborg (2)
  • 刊名:BMC Genetics
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:13
  • 期:1
  • 全文大小:459KB
  • 参考文献:1. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA: Potential etiologic and functional implications of genome-wide associations of genome-wide association loci for human diseases and traits. / Proc Natl Acad Sci USA 2008, 106:9362-367. CrossRef
    2. Visscher PM, Brown MA, McCarthy MI, Yang J: Five years of GWAS discovery. / Am J Hum Genet 2012, 90:7-4. CrossRef
    3. Daetwyler HD, Schenkel FS, Sargolzaei M, Robinson JA: A genome scan to detect quantitative trait loci for economically important traits in Holstein cattle using two methods and a dense single nucleotide polymorphism map. / J Dairy Sci 2008, 91:3225-236. CrossRef
    4. Kolbehdari D, Wang Z, Grant JR, Murdoch B, Prasad A, Moore SS: A whole genome scan to map QTL for milk production traits and somatic cell score in Canadian Holstein bulls. / J Anim Breed Genet 2009, 126:216-27. CrossRef
    5. Pryce JE, Bolormaa S, Chamberlain AJ, Bowman PJ, Savin K, Goddard ME, Hayes BJ: A validated genome-wide association study in 2 dairy cattle breeds for milk production and fertility traits using variable length haplotypes. / J Dairy Sci 2010, 93:3331-345. CrossRef
    6. Liu W, Liu D, Liu J, Chen S, Qu L, Zheng J, Xu G, Yang N: A genome-wide SNP scan reveals novel loci for egg production and quality traits in white leghorn and brown-egg dwarf layers. / PLoS One 2011, 6:1-.
    7. Gregersen VR, Conley LN, Sorensen KK, Guldbrandtsen B, Velander IH, Bendixen C: Genome-wide association scan and phased haplotype construction for quantitative traits loci affecting boar taint in three pig breeds. / BMC Genomics 2012, 13:22. CrossRef
    8. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR: Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. / Nature 2011, 467:1-0.
    9. Atwell A, Huang YS, Vilhalmsson BJ, Willems G, Horton MLY, Meng D, Platt A, Tarone AM, Hu TT JR, Muliyati NW ZX, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, Meaux JD, Ecker JR, Faure N, Knikern JM, Jones JDG, Michael T, Nemri A, Roux F, Salt ED, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M: Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. / Nature 2010, 465:627-31. CrossRef
    10. Georges M, Nielsen D, Mackinnon M, Mishra A, Okimoto R, Pasqino AT, Sargeant LS, Sorensen A, Steele MR, Zhao X, Womack JE, Hoeschele I: Mapping quantitative traits loci controlling milk production traits in dairy cattle by exploiting progeny testing. / Genetics 1995, 139:907-20.
    11. Andersson L, Georges M: Domestic-animal genomics: deciphering the genetics of complex traits. / Nat Rev Genet 2004, 5:202-12. CrossRef
    12. Goddard ME, Hayes BJ: Mapping genes for complex traits in domestic animals and their use in breeding programmes. / Nat Rev Genet 2009, 10:381-91. CrossRef
    13. Hirschhorn JN, Daly MJ: Genome-wide association studies for common diseases and complex traits. / Nat Rev Genet 2005, 6:95-09. CrossRef
    14. The Bovine Hapmap Consortium: Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. / Science 2009, 24:528-32. CrossRef
    15. de Roos APW, Hayes BJ, Spelman R, Goddard ME: Linkage disequilibrium and persistence of phase in Holstein Friesian, jersey and angus cattle. / Genetics 2008, 179:1503-512. CrossRef
    16. Bolormaa S, Pryce JE, Hayes BJ, Goddard ME: Multivariate analysis of a genome-wide association study in dairy cattle. / J Dairy Sci 2010, 93:3818-833. CrossRef
    17. Jiang L, Liu JF, Sun DX, Ma PP, Ding XD, Yu Y, Zhang Q: Genome-wide association studies for milk production traits in Chinese Holstein population. / PLoS One 2010, 5:e13661. CrossRef
    18. Cole JB, Wiggans GR, Ma L, Sonstegard TS, Thomas JLJ, Crooker BA, Tassell CPV, Yang J, Wang S, Matukumalli LK, Da Y: Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein Cow. / BMC Genomics 2011, 12:408. CrossRef
    19. Maltecca C, Gray KA, Weigel KA, Cassady JP, Ashwell MA: A genome-wide association study of direct gestation length in US Holstein and Italian Brown populations. / Anim Genet 2011, 42:585-91. CrossRef
    20. Price AL, Zaitlen NA, Reich D, Patterson NJ: New approaches to population stratification in genome-wide association studies. / Nat Rev Genet 2010, 11:459-63. CrossRef
    21. Devlin B, Roeder K: Genomic control for association studies. / Biometrics 1999, 55:9997-004. CrossRef
    22. Pritchard JK, Stephens M, Rosenberg N, Donnelly P: Association mapping in structured populations. / Am J Hum Genet 2000, 67:170-81. CrossRef
    23. Price AL, Patterson NJ, Plenge RM, Weinblatt WE, Shadick N, Reich D: principal component analysis corrects for stratification in genome-wide association studies. / Nat Genet 2006, 38:904-09. CrossRef
    24. Yu J, Pressoir G, Briggs W, Vroh BI, Yamasaki M, Doebley JF, McMullen MD, Faut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. / Nat Genet 2006, 38:203-08. CrossRef
    25. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E: Efficient control for population structure in model organism association mapping. / Genetics 2008, 178:1709-723. CrossRef
    26. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E: Variance component model to account for sample structure in genome-wide association studies. / Nat Genet 2010, 42:348-54. CrossRef
    27. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES: Mixed linear model approach adapted for genome-wide association studies. / Nat Genet 2010, 42:355-60. CrossRef
    28. Patterson NJ, Price AL, Reich D: Population structure and Eigenanalysis. / PLoS Genet 2006, 2:2074-093. CrossRef
    29. Hu ZL, Park CA, Fritz E, Reecy JM: / QTLdb: A comprehensive database tool building bridges between genotypes and phenotypes. Germany: Proc 9th Worldd Cong Genet Appl Livest Prod Leipzig; 2010.
    30. Viitala SM, Schulman NF, Koning DJ, Elo K, Kinos R, Virta A, Virta J, Tanila AM, Vilkki JH: Quantitative trait loci affecting milk production traits in Finnish ayrshire dairy cattle. / J Dairy Sci 2003, 86:1828-836. CrossRef
    31. Schrooten C, Bink MCAM, Bovenhuis H: Whole genome scan to detect chromosomal regions affecting multiple traits in dairy cattle. / J Dairy Sci 2004, 87:3550-560. CrossRef
    32. Harder B, Bennewitz J, Reinsch N, Thaller G, Thomsen H, Kuhn C, Schwerin M, Erhardt G, F?rster M, Reinhardt F, Kalm E: Mapping of quantitative trait loci for lactation persistency traits in German Holstein dairy cattle. / J Anim Breed Genet 2006, 123:89-6. CrossRef
    33. McClure MC, Morsci NS, Schnabel RD, Kim JW, Yao P, Rolf MM, McKay SD, Gregg SJ, Chapple RH, Northcutt SL, Taylor JF: A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial angus cattle. / Anim Genet 2010, 41:597-07. CrossRef
    34. National Center for Biotechnology Information (NCBI): [http://www.ncbi.nlm.nih.gov/mapview/] / Bovine genome resources.
    35. [http://www.ensembl.org/index.html] / ENSEMBL genome browser.
    36. Leong SR, Baxter RC, Camerato T, Dai J, Wood WI: Structure and functional expression of the acid-labile subunit of the insulin-like growth factor binding protein complex. / Mol Endocrinol 1992, 6:870-76. CrossRef
    37. Courtland HW, DeMambro V, Matnard J, Sun H, Elis S, Rosen C, Yakar S: Sex-specific regulation of body size and bone slenderness by the acid labil subunit. / J Bone Miner Res 2010, 25:2059-068. CrossRef
    38. David A, Rose SJ, Miraki-Mound F, Metherell LA, Savange MO, Clark AJ, Camacho-Huber C: Acid-labile subunit deficiency and growth failure: description of two novel cases. / Horm Res Paediatr 2010, 73:328-34. CrossRef
    39. Domene HM, Bengolea SV, Jasper HG, Boisclair YR: Acid-labile subunit deficiency: phenotypic similarities and differences between human and mouse. / J Endocrinol Invest 2005,28(5 Suppl):43-6.
    40. Schrooten C, Bovenhuis H, Coppieters W, Van Arendonk JAM: Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle. / J Dairy Sci 2000, 83:795-06. CrossRef
    41. Schulman NF, Viitala SM, Koning DJ, Virta J, Tanila AM, Vilkki JH: Quantitative trait loci for health traits in Finnish ayrshire cattle. / J Dairy Sci 2004, 87:443-49. CrossRef
    42. Lund MS, Guldbrandtsen B, Buitenhuis AJ, Thomsen B, Bendixen C: Detection of quantitative trait loci in Danish Holstein cattle affecting clinical mastitis, somatic cell score, udder conformation traits and assessment of associated effects on milk yield. / J Dairy Sci 2008, 91:4028-036. CrossRef
    43. Glazov EA, Kongsuwan K, Asssavalapsakui W, Horwood PF, Mitter N, Mahony TJ: Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection. / PLoS One 2009, 4:e6349. CrossRef
    44. Zwald NR, Weigel KA, Chang YM, Welper RD, Clay JS: Genetic evaluation of dairy sires for milking duration using electronically recorded milking times of their daughters. / J Dairy Sci 2005, 88:1192-198. CrossRef
    45. Boichard D, Grohs C, Bourgeois F, Cerqueira F, Faugeras R, Neau A, Rupp R, Amigues Y, Boscher MY, Leveziel H: Detection of genes influencing economic traits in three French dairy cattle breeds. / Genet Sel Evol 2003, 35:77-01. CrossRef
    46. Jorjani H, Jakobsen J, Nilforooshan MA, Hjerpe E, Zumbach B, Palucci V, Dürr J: Genomic evaluation of BSW populations, InterGenomics: Results and Deliverables. / Interbull Bulletin 2012, 43:5-.
    47. VanRaden PM, Wiggans GR: Derivation, calculation, and use of national animal model information. / J Dairy Sci 1991, 74:2737-746. CrossRef
    48. R development Core Team: R: [http://www.r-project.org/] / A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2008.
    49. Yang J, Lee SH, Goddard ME, Visscher PM: GCTA: a tool for genome-wide complex trait analysis. / Am J Hum Genet 2011, 88:76-2. CrossRef
    50. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, Maller J, Sklar P, Bakker PIW, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. / Am J Hum Genet 2007, 81:559-75. CrossRef
  • 作者单位:Jiazhong Guo (1) (2)
    Hossein Jorjani (3)
    ?rjan Carlborg (2)

    1. College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
    2. Department of Clinical Sciences, Division of Computational Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
    3. Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
文摘
Background The genome-wide association study (GWAS) is a useful approach to identify genes affecting economically important traits in dairy cattle. Here, we report the results from a GWAS based on high-density SNP genotype data and estimated breeding values for nine production, fertility, body conformation, udder health and workability traits in the Brown Swiss cattle population that is part of the international genomic evaluation program. Result GWASs were performed using 50?k SNP chip data and deregressed estimated breeding values (DEBVs) for nine traits from between 2061 and 5043 bulls that were part of the international genomic evaluation program coordinated by Interbull Center. The nine traits were milk yield (MY), fat yield (FY), protein yield (PY), lactating cow’s ability to recycle after calving (CRC), angularity (ANG), body depth (BDE), stature (STA), milk somatic cell score (SCS) and milk speed (MSP). Analyses were performed using a linear mixed model correcting for population confounding. A total of 74 SNPs were detected to be genome-wide significantly associated with one or several of the nine analyzed traits. The strongest signal was identified on chromosome 25 for milk production traits, stature and body depth. Other signals were on chromosome 11 for angularity, chromosome 24 for somatic cell score, and chromosome 6 for milking speed. Some signals overlapped with earlier reported QTL for similar traits in other cattle populations and were located close to interesting candidate genes worthy of further investigations. Conclusions Our study shows that international genetic evaluation data is a useful resource for identifying genetic factors influencing complex traits in livestock. Several genome wide significant association signals could be identified in the Brown Swiss population, including a major signal on BTA25. Our findings report several associations and plausible candidate genes that deserve further exploration in other populations and molecular dissection to explore the potential economic impact and the genetic mechanisms underlying these production traits in cattle.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700