用户名: 密码: 验证码:
Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling
详细信息    查看全文
  • 作者:Yan Yan (1) (2)
    WenJu Gu (2)
    GaoXiang Li (1)

    1. Department of Physics
    ; Huazhong Normal University ; Wuhan ; 430079 ; China
    2. Institute of Quantum Optics and Information Photonics
    ; School of Physics and Optoelectronic Engineering ; Yangtze University ; Jingzhou ; 434023 ; China
  • 关键词:EPR mechanical entanglement ; double dissipative optomechanics ; efficient transfer of quantum correlations ; 050306
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:58
  • 期:5
  • 页码:1-8
  • 全文大小:354 KB
  • 参考文献:1. Gigan, S, B枚hm, H R, Paternostro, M (2006) Self-cooling of a micromirror by radiation pressure. Nature 444: pp. 67-70 CrossRef
    2. Arcizet, O, Cohadon, P F, Briant, T (2006) Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444: pp. 71-74 CrossRef
    3. Liu, Y C, Xiao, Y F, Luan, X S (2013) Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys Rev Lett 110: pp. 153606 CrossRef
    4. Xiong, H, Si, L G, Lu, X Y (2013) Carrier-envelope phase-dependent effect of high-order sideband generation in ultrafast driven optomechanical system. Opt Lett 38: pp. 353 CrossRef
    5. Guo, Y J, Li, K, Nie, W J (2014) Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys Rev A 90: pp. 053841 CrossRef
    6. Wang, H, Gu, Y, Liu, Y X (2014) Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys Rev A 90: pp. 023817 CrossRef
    7. Chen, B, Jiang, C, Li, J J (2011) All-optical transistor based on a cavity optomechanical system with a Bose-Einstein condensate. Phys Rev A 84: pp. 055802 CrossRef
    8. Dong, C H, Fiore, V, Kuzyk, M C (2012) Optomechanical dark mode. Science 338: pp. 1609 CrossRef
    9. Gorodetksy, M L, Schliesser, A, Anetsberger, G (2010) Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Opt Express 18: pp. 23236-23246 CrossRef
    10. Fu, H, Mao, T H, Li, Y (2014) Optically mediated spatial localization of collective modes of two coupled cantilevers for high sensitivity optomechanical transducer. Appl Phy Lett 105: pp. 014108 CrossRef
    11. Abramovici, A, Althouse, WE, Drever, RWP (1992) LIGO: The laser interferometer gravitational-wave observatory. Science 256: pp. 325-333 CrossRef
    12. Ma, Y Q, Danilishin, S L, Zhao, C N (2014) Narrowing the Filter-cavity bandwidth in gravitational-wave Detectors via optomechanical interaction. Phys Rev Lett 113: pp. 151102 CrossRef
    13. Vitali, D, Mancini, S, Tombesi, P (2004) Optomechanical scheme for the detection of weak impulsive forces. Phys Rev A 64: pp. 051401 CrossRef
    14. Dong, C H, Shen, Z, Zou, C L (2015) Interconversion of photon-phonon in a silica optomechanical microresonator. Sci China-Phy Mech Astron 58: pp. 050308
    15. Liu, Y C, Xiao, Y F, Chen, Y L (2013) Parametric down-conversion and Polariton pair generation in optomechanical systems. Phys Rev Lett 111: pp. 083601 CrossRef
    16. Habraken, S J M, Lechner, W, Zoller, P (2013) Resonances in dissipative optomechanics with nanoparticles: Sorting, speed rectification, and transverse cooling. Phys Rev A 87: pp. 053808 CrossRef
    17. Elste, F, Girvin, S M, Clerk, A A (2009) Quantum noise interference and backaction cooling in cavity nanomechanics. Phys Rev Lett 102: pp. 207209 CrossRef
    18. Braginsky, V B, Strigin, S E, Vyatchanin, S P (2001) Parametric oscillatory instability in Fabry-Perot interferometer. Phys Lett A 287: pp. 331-338 CrossRef
    19. Schliesser, A, DelHaye, P, Nooshi, N (2006) Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys Rev Lett 97: pp. 243905 CrossRef
    20. Wilson-Rae, I, Nooshi, N, Zwerger, W (2007) Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys Rev Lett 99: pp. 093901 CrossRef
    21. Teufel, J D, Donner, T, Li, D (2011) Sideband cooling of micromechanical motion to the quantum ground state. Nature 475: pp. 359-363 CrossRef
    22. Safavi-Naeini, A H, Chan, J (2012) Observation of quantum motion of a nanomechanical resonator. Phys Rev Lett 108: pp. 033602 CrossRef
    23. Zhang, P, Wang, Y D, Sun, C P (2005) Cooling mechanism for a nanomechanical resonator by periodic coupling to a cooper pair box. Phys Rev Lett 95: pp. 097204 CrossRef
    24. Wang, X T, Vinjanampathy, S, Strauch, F W (2011) Ultraefficient cooling of resonators: Beating sideband cooling with quantum control. Phys Rev Lett 107: pp. 177204 CrossRef
    25. Xia, K Y, Evers, J (2009) Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference. Phys Rev Lett 103: pp. 227203 CrossRef
    26. Rabl, P, Cappellaro, P, Gurudev Dutt, M V (2009) Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys Rev B 79: pp. 041302 CrossRef
    27. Zhang, J Q, Zhang, S, Zou, J H (2013) Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect. Opt Express 21: pp. 29695-29710 CrossRef
    28. Genes, C, Ritsch, H, Drewsen, M (2011) Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency. Phys Rev B 84: pp. 051801 CrossRef
    29. Morigi, G, Eschner, J, Keitel, C H (2000) Ground state laser cooling using electromagnetically induced transparency. Phys Rev Lett 85: pp. 4458-4461 CrossRef
    30. Evers, J, Keitel, C H (2000) Double-EIT ground-state laser cooling without blue-sideband heating. Europhys Lett 68: pp. 370-376 CrossRef
    31. Schmidt-Kaler, F, Eschner, J, Morigi, G (2001) Laser cooling with electromagnetically induced transparency: Application to trapped samples of ions or neutral atoms. Appl Phys B 73: pp. 807-814 CrossRef
    32. Fleischhauer, M, Imamoglu, A, Marangos, J P (2005) Electromagnetically induced transparency: Optics in coherent media. Rev Mod Phys 77: pp. 633-673 CrossRef
    33. Zhang, S, Zhang, J Q, Zhang, J (2014) Ground state cooling of an optomechanical resonator assisted by a 位-type atom. Opt Express 22: pp. 28118-28131 CrossRef
    34. Xuereb, A, Schnabel, R, Hammerer, K (2011) Dissipative optomechanics in a Michelson-Sagnac interferometer. Phys Rev Lett 107: pp. 213604 CrossRef
    35. Brooks, D W C, Botter, T, Schreppler, S (2012) Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature 488: pp. 476-480 CrossRef
    36. Safavi-Naeini, A H, Gr枚blacher, S, Hill, J T (2012) Squeezed light from a silicon micromechanical resonator. Nature 500: pp. 185-189 CrossRef
    37. Purdy, T P, Yu, P L, Peterson, R W (2013) Strong optomechanical squeezing of light. Phys Rev X 3: pp. 031012
    38. Clerk, A A, Marquardt, F, Jacobs, K (2008) Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J Phys 10: pp. 095010 CrossRef
    39. Ian, H, Gong, Z R, Liu, Y X (2008) Cavity optomechanical coupling assisted by an atomic gas. Phys Rev A 78: pp. 013824 CrossRef
    40. J盲hne, K, Genes, C, Hammerer, K (2009) Cavity-assisted squeezing of a mechanical oscillator. Phys Rev A 79: pp. 063819 CrossRef
    41. Farace, A, Giovannetti, V (2012) Enhancing quantum effects via periodic modulations in optomechanical systems. Phys Rev A 86: pp. 013820 CrossRef
    42. Rogers, B, Paternostro, M, Palma, G M (2012) Entanglement control in hybrid optomechanical systems. Phys Rev A 86: pp. 042323 CrossRef
    43. Gu, W J, Li, G X (2013) Squeezing of the mirror motion via periodic modulations in a dissipative optomechanical system. Opt Express 21: pp. 20423-20440 CrossRef
    44. Vitali, D, Gigan, S, Ferreira, A (2007) Optomechanical entanglement between a movable mirror and a cavity field. Phys Rev Lett 98: pp. 030405 CrossRef
    45. Wang, Y D, Clerk, A A (2013) Reservoir-engineered entanglement in optomechanical systems. Phys Rev Lett 110: pp. 253601 CrossRef
    46. Abdi, M, Pirandola, S, Tombesi, P (2012) Entanglement swapping with local certification: Application to remote micromechanical resonators. Phys Rev Lett 109: pp. 143601 CrossRef
    47. Kuzyk, M C, Enk, S J V, Wang, H (2013) Generating robust optical entanglement in weak-coupling optomechanical systems. Phys Rev A 88: pp. 062341 CrossRef
    48. Wang, C, He, L Y, Zhang, Y (2013) Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system. Sci China-Phy Mech Astron 56: pp. 2054-2058 CrossRef
    49. Liu, Y M (2014) Virtual-photon-induced entanglement with two nitrogenvacancy centers coupled to a high-Q silica microsphere cavity. Sci China-Phy Mech Astron 56: pp. 2138-2142 CrossRef
    50. Nie, W J, Lan, Y H, Li, Y (2013) Generating large steady-state optomechanical entanglement by the action of Casimir force. Sci China-Phy Mech Astron 57: pp. 2276-2284 CrossRef
    51. Mancini, S, Giovannetti, V, Vitali, D (2002) Entangling macroscopic oscillators exploiting radiation pressure. Phys Rev Lett 88: pp. 120401 CrossRef
    52. Pinard, M, Dantan, A, Vitali, D (2005) Entangling movable mirrors in a double-cavity system. Europhys Lett 72: pp. 747-753 CrossRef
    53. Niedenzu, W, Sandner, R M, Genes, C (2012) Quantum-correlated motion and heralded entanglement of distant optomechanically coupled objects. JPB-At Mol Opt Phys 45: pp. 245501 CrossRef
    54. Gu, W J, Li, G X, Yang, Y P (2013) Generation of squeezed states in a movable mirror via dissipative optomechanical coupling. Phys Rev A 88: pp. 013835 CrossRef
    55. Weiss, T, Bruder, C, Nunnenkamp, A (2010) Strong-coupling effects in dissipatively coupled optomechanical systems. Rev Mod Phys 82: pp. 1155 CrossRef
    56. Aloufi K, Bougouffa S, Ficek Z, et al. Dynamics of entangled states in squeezed reservoirs. arXiv:1403.3892
    57. Weiss, T, Nunnenkamp, A (2013) Quantum limit of laser cooling in dispersively and dissipatively couped optomechanical systems. Phys Rev A 88: pp. 023850 CrossRef
    58. Gardiner, C, Zoller, P (2000) Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer, New York CrossRef
    59. Xiong, H, Si, L G, Lv, X Y (2015) Review of cavity optomechanics in the weak-coupling regime: From linearization to intrinsic nonlinear interactions. Sci China-Phy Mech Astron 58: pp. 050302
    60. Tana艣, R, Ficek, Z (2004) Stationary two-atom entanglement induced by noclassical two-photon correlations. J Opt B-Quantum Semicl Opt 6: pp. S610-S617 CrossRef
    61. Scully, M O, Zubairy, M S (1997) Quantum Optics. Cambrige University Press, Cambridge CrossRef
    62. Schumaker, B L, Caves, C M (1985) New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation. Phys Rev A 31: pp. 3093-3111 CrossRef
    63. Reid, M D, Drummond, P D, Bowen, W P (2009) The Einstein-Podolsky-Rosen paradox: From concepts to applications. Rev Mod Phys 81: pp. 1727 CrossRef
    64. Giovannetti, V, Mancini, S, Tombesi, P (2001) Radiation pressure induced Einstein-Podolsky-Rosen paradox. Europhys Lett 54: pp. 559-565 CrossRef
    65. Duan, L M, Giedke, G, Cirac, J I (2000) Inseparability criterion for continuous variable systems. Phys Rev Lett 84: pp. 2722-2725 CrossRef
    66. Sawadsky, A, Kaufer, H, Nia, R M (2015) Observation of generalized optomechanical coupling and cooling on cavity resonance. Phys Rev Lett 114: pp. 043601 CrossRef
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Chinese Library of Science
    Mechanics, Fluids and Thermodynamics
    Physics
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1927
文摘
In this paper, we propose a scheme to generate an entangled state between two spatially separated movable mirrors by injecting the two-mode squeezed optical reservoir to the dissipative optomechanics, in which the movable mirrors can modulate the linewidth of the cavity modes. When the coupling between the mirrors and the corresponding cavity modes is weak, the two driven cavity fields can respectively behave as the squeezed-vacuum reservoir for the two movable mirrors by utilizing the effect of completely destructive interference of quantum noise. Thus the mechanical modes are prepared in a two-mode squeezed vacuum state. Moreover, when the coupling between the two mirrors and the cavities modes is strong, the entanglement between the two movable mirrors decreases because photonic excitation can preclude the completely destructive interference of quantum noise, but the movable mirrors are still entangled.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700