用户名: 密码: 验证码:
Tsunami Characteristics Along the Peru–Chile Trench: Analysis of the 2015 Mw8.3 Illapel, the 2014 Mw8.2 Iquique and the 2010 Mw8.8 Maule Tsunamis in the Near-field
详细信息    查看全文
  • 作者:R. Omira ; M. A. Baptista ; F. Lisboa
  • 关键词:Peru–Chile Trench ; tsunami ; local impact ; numerical modeling ; spectral analysis
  • 刊名:Pure and Applied Geophysics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:173
  • 期:4
  • 页码:1063-1077
  • 全文大小:9,499 KB
  • 参考文献:An , C., Sepúlveda , I., and Liu , P. L. F. (2014). Tsunami source and its validation of the 2014 Iquique, Chile, earthquake. Geophysical Research Letters, 41(11), 3988–3994.CrossRef
    Aránguiz , R., González , G., González , J., Catalán , P.A., Cienfuegos , R., Yagi , Y., Okuwaki , R., Urra , L., Contreras , K., Del Rio , I. and Rojas , C. (2016). The 16 September 2015 Chile Tsunami from the Post-Tsunami Survey and Numerical Modeling Perspectives. Pure Appl. Geophys., 173 (2), 333–348.CrossRef
    Berkman , S. C., and Symons , J. M. (1964), The Tsunami of May 22, 1960 as Recorded at Tide Stations. U.S. Department of Commerce, Coast and Geodetic Survey, pp.79.
    Catalán , P., Aránguiz , R., González , G., Tomita , T., Cienfuegos , R., González , J., Shrivastava , M.N., Kumagai , K., Mokrani , C., Cortés , P. and Gubler , A. (2015). The 1 April 2014 Pisagua tsunami: Observations and modeling. Geophys. Res. Lett., 42(8), 2918–2925.CrossRef
    Contreras -López , M., Winckler , P., Sepúlveda , I., Andaur -Álvarez , A., Cortés -Molina , F., Guerrero , C.J., Mizobe , C.E., Igualt , F., Breuer , W., Beyá , J.F. and Vergara , H. (2016). Field survey of the 2015 Chile tsunami with emphasis on coastal wetland and conservation areas. Pure Appl. Geophys., 173(2), 349–367.CrossRef
    De Mets , C., Gordon , R. G., and Argus , D. F. (2010), Geologically current plate motions. Geophys. J. Int., 181, 1–80.CrossRef
    Fritz , H. M., Petroff , C. M., Catalán , P. A., Cienfuegos , R., Winckler , P., Kalligeris , N., Weiss , R., Barrientos , S.E., Meneses , G., Valderas -Bermejo , C., Ebeling , C., Papadopulos , A., Contreras , M., Almar , R., Dominguez , J. C., and Synolakis , C. E. (2011). Field survey of the 27 February 2010 Chile tsunami. Pure Appl. Geophys., 168(11), 1989–2010.CrossRef
    Fujii , Y., and Satake , K. (2013). Slip distribution and seismic moment of the 2010 and 1960 Chilean earthquakes inferred from tsunami waveforms and coastal geodetic data. Pure Appl. Geophys., 170(9–10), 1493–1509.CrossRef
    Geist , E. L., Lynett , P. J., and Chaytor , J. D. (2009), Hydrodynamic modeling of tsunamis from the Currituck landslide. Marine Geology, 264(1), 41–52.CrossRef
    Geist , E. L. (2013). Near-field tsunami edge waves and complex earthquake rupture. Pure Appl. Geophys., 170(9–10), 1475–1491.CrossRef
    Gusman , A. R., Murotani , S., Satake , K., Heidarzadeh , M., Gunawan , E., Watada , S., and Schurr , B. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean‐wide tsunami waveforms and GPS data. Geophys. Res. Lett., 42(4), 1053–1060.CrossRef
    Heidarzadeh , M., Satake , K., Murotani , S., Gusman , A. R., and Watada , S. (2014). Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 M w 8.2 Iquique, Chile Earthquake. Pure Appl. Geophys., 172(3–4), 719–730.
    Heidarzadeh , M., Murotani , S., Satake , K., Ishibe , T., and Gusman A. R. (2015). Source model of the 16 September 2015 Illapel, Chile Mw8.4 earthquake based on teleseismic and tsunami data. Geophys. Res. Lett., 42, doi:10.​1002/​2015GL067297 .
    Kajiura , K. (1970). Tsunami source, energy and the directivity of wave radiation. Bull. Earthquake Research Institute, 48, 835–869.
    Kajiura , K. (1981). Tsunami energy in relation to parameters of the earthquake fault model. Bull. Earthquake Research Institute, 56, 415–440.
    Kanamori , H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981–2987.CrossRef
    Lay , T., Ammon , C. J., Kanamori , H., Koper , K. D., Sufri , O., and Hutko , A. R. (2010), Teleseismic inversion for rupture process of the 27 February 2010 Chile (M-w 8.8) earthquake. Geophys. Res. Lett., 37, L13301, doi:10.​1029/​2010GL043379 .CrossRef
    Lay , T., Yue , H., Brodsky , E. E., and An , C. (2014), The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence. Geophys. Res. Lett., 41(11), 3818–3825.CrossRef
    Lomnitz , C. (2004), Major earthquakes of Chile: a historical survey, 1535–1960. Seismological Research Letters, 75(3), 368–378.CrossRef
    Lorito , S., Romano , F., Atzori , S., Tong , X., Avallone , A., Mccloskey , J., Cocco , M., Boschi , E., and Piayanesi , A. (2011), Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake, Nature Geoscience, 4(3), 173–177.CrossRef
    Miranda , J.M., Luis , J., Reis , C., Omira , R., and Baptista , M.A. (2014), Validation of NSWING, a multi-core finite difference code for tsunami propagation and run-up. American Geophysical Union (AGU) Fall Meeting, San Francisco. Paper Number : S21A-4390. Session Number and Title: S21A, Natural Hazards.
    Moreno , M., Rosenau , M., and Oncken , O. (2010), 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone, Nature, 467(7312), 198–202.CrossRef
    NOAA (2015), https://​www.​ngdc.​noaa.​gov/​hazard/​16sep2015.​html . last accessed 20/11/2015.
    Okada , Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bull Seismol. Soc. Am., 75(4), 1135–1154.
    Okal , E. A., and Synolakis , C. E. (2003). A theoretical comparison of tsunamis from dislocations and landslides, Pure Appl. Geophys., 160(10–11), 2177–2188.CrossRef
    Omira , R., Vales , D., Marreiros , C., and Carrilho , F. (2015). Large submarine earthquakes that occurred worldwide in a 1-year period (June 2013 to June 2014)—a contribution to the understanding of tsunamigenic potential, Nat. Hazards Earth Syst. Sci., 15, 2183–2200.CrossRef
    Pollitz , F.F., Brooks , B., Tong , X., Bevis , M.G., Foster , J.H., Bürgmann , R., Smalley , R., Vigny , C., Socquet , A., Ruegg , J.C. and Campos , J. (2011). Coseismic slip distribution of the February 27, 2010 Mw 8.8 Maule, Chile earthquake, Geophys. Res. Lett., 38(9), doi:10.​1029/​2011GL047065 .
    Pulido , N., Yagi , Y., Kumagai , H., and Nishimura , N. (2011). Rupture process and coseismic deformations of the 27 February 2010 Maule earthquake, Chile, Earth Planets and Space, 63(8), 955–959.CrossRef
    Rabinovich , A. B., and Thomson , R. E. (2007). The 26 December 2004 Sumatra tsunami: Analysis of tide gauge data from the world ocean Part 1. Indian Ocean and South Africa. Pure Appl. Geophys., 164, 261–308.CrossRef
    Rabinovich , A.B., Candella , R.N., and Thomson , R.E. (2013a). The open ocean energy decay of three recent trans-Pacific tsunamis, Geophys. Res. Lett., 40(12):3157–3162.CrossRef
    Rabinovich , A.B., Thomson , R.E. and Fine , I.V. (2013b). The 2010 Chilean tsunami off the west coast of Canada and the northwest coast of the United States, Pure App. Geophys., 170(9–10), 1529–1565.CrossRef
    Saito , T., Matsuzawa , T., Obara , K., and Baba , T. (2010). Dispersive tsunami of the 2010 Chile earthquake recorded by the high‐sampling‐rate ocean‐bottom pressure gauges, Geophys. Res. Lett., 37(23). L23303, doi:10.​1029/​2010GL045290 .CrossRef
    Tong , X. P., Sandwell , D., Luttrell , K., Brooks , B., Bevis , M., Shimada , M., Foster , J., Smalley , R., Parra , H., Soto , J. C. B., Blanco , M., Kendrick , E., Genrich , J., and Caccamise , D. J. (2010), The 2010 Maule, Chile earthquake: Downdip rupture limit revealed by space geodesy, Geophys. Res. Lett., 37. L24311, doi:10.​1029/​2010GL045805 .CrossRef
    USGS (2014), US Geological Survey, M8.2 and Aftershocks Offshore Northern Chile Earthquake of 1 April 2014, available at: http://​earthquake.​usgs.​gov/​earthquakes/​eqarchives/​poster/​2014/​20140401.​pdf , last accessed 10/01/2016.
    USGS (2015), US Geological Survey, earthquake general summary available at: http://​earthquake.​usgs.​gov/​earthquakes/​eventpage/​us20003k7a#general_​summary , last accessed 20/11/2015.
    Wu , T.-R. and Ho , T.-C. (2011). High resolution tsunami inversion for 2010 Chile earthquake, Nat. Hazards Earth Syst. Sci., 11, 3251–3261.CrossRef
    Yamazaki , Y., and Cheung , K. F. (2011). Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake, Geophys. Res. Lett., 38(12), L12605, doi:10.​1029/​2011GL047508 .CrossRef
    Yagi , Y., Okuwaki , R., Enescu , B., Hirano , S., Yamagami , Y., Endo , S., and Komoro , T. (2014). Rupture process of the 2014 Iquique Chile Earthquake in relation with the foreshock activity. Geophys. Res. Lett., 41(12), 4201–4206.CrossRef
    Ye , L., Lay , T., Kanamori , H., and Koper , K. D. (2016). Rapidly Estimated Seismic Source Parameters for the 16 September 2015 Illapel, Chile Mw 8.3 Earthquake. Pure App. Geophys., 173(2), 321–332.
  • 作者单位:R. Omira (1) (2)
    M. A. Baptista (2) (3)
    F. Lisboa (1)

    1. Instituto Português do Mar e da Atmosfera, IPMA, Rua C do Aeroporto de Lisboa, 1749-077, Lisbon, Portugal
    2. Instituto Dom Luiz, FCUL, University of Lisbon, Lisbon, Portugal
    3. Instituto Superior de Engenharia de Lisboa, Instituto Poltécnico de Lisboa, Lisbon, Portugal
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9136
文摘
Tsunamis occur quite frequently following large magnitude earthquakes along the Chilean coast. Most of these earthquakes occur along the Peru–Chile Trench, one of the most seismically active subduction zones of the world. This study aims to understand better the characteristics of the tsunamis triggered along the Peru–Chile Trench. We investigate the tsunamis induced by the Mw8.3 Illapel, the Mw8.2 Iquique and the Mw8.8 Maule Chilean earthquakes that happened on September 16th, 2015, April 1st, 2014 and February 27th, 2010, respectively. The study involves the relation between the co-seismic deformation and the tsunami generation, the near-field tsunami propagation, and the spectral analysis of the recorded tsunami signals in the near-field. We compare the tsunami characteristics to highlight the possible similarities between the three events and, therefore, attempt to distinguish the specific characteristics of the tsunamis occurring along the Peru–Chile Trench. We find that these three earthquakes present faults with important extensions beneath the continent which result in the generation of tsunamis with short wavelengths, relative to the fault widths involved, and with reduced initial potential energy. In addition, the presence of the Chilean continental margin, that includes the shelf of shallow bathymetry and the continental slope, constrains the tsunami propagation and the coastal impact. All these factors contribute to a concentrated local impact but can, on the other hand, reduce the far-field tsunami effects from earthquakes along Peru–Chile Trench.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700