用户名: 密码: 验证码:
An approach for evaluating the impact of an intermittent renewable energy source on transmission expansion planning
详细信息    查看全文
  • 作者:Rongrit Chatthaworn ; Surachai Chaitusaney
  • 关键词:Adaptive tabu search ; Renewable energy generation ; Robust optimization ; Transmission expansion planning ; A ; TM715
  • 刊名:Frontiers of Information Technology & Electronic Engineering
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:16
  • 期:10
  • 页码:871-882
  • 全文大小:521 KB
  • 参考文献:Akbari, T., Heidarization, M., Siab, M.S., et al., 2012. Towards integrated planning: simultaneous transmission and substation expansion planning. Electr. Power Syst. Res., 86:131鈥?39. [doi:10.1016/j.epsr.2011.12.012]CrossRef
    Alizadeh, B., Dehghan, S., Amjady, N., et al., 2013. Robust transmission system expansion considering planning uncertainties. IET Gener. Transm. Distrib., 7(11):1318鈥?331. [doi:10.1049/iet-gtd.2012.0137]CrossRef
    Asadamongkol, S., Eua-Arporn, B., 2010. Benders Decomposition Based Method for Multistage Transmission Expansion Planning with Security Constraints. PhD Thesis, Department of Electrical Engineering, Chulalongkorn University, Bangkok.
    Bahiense, L., Oliveira, G.C., Pereira, M., et al., 2001. A mixed integer disjunctive model for transmission network expansion. IEEE Trans. Power Syst., 16(3):560鈥?65. [doi:10.1109/59.932295]CrossRef
    Bent, R., Berscheid, A., Loren Toole, G., 2011. Generation and transmission expansion planning for renewable energy integration. Power Systems Computation Conf.
    Bertsimas, D., Litvinov, E., Sun, X.A., et al., 2013. Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst., 28(1): 52鈥?3. [doi:10.1109/TPWRS.2012.2205021]CrossRef
    Cebeci, M.E., Eren, S., Tor, O.B., et al., 2011. Transmission and substation expansion planning using mixed integer programming. North American Power Symp., p.1鈥?. [doi:10.1109/NAPS.2011.6024851]
    Chanda, R.S., Bhattacharjee, P.K., 1994. Application of computer software in transmission expansion planning using variable load structure. Electr. Power Syst. Res., 31(1):13鈥?0. [doi:10.1016/0378鈥?796(94)90024鈥?]CrossRef
    da Silva, E.L., Ortiz, J.M.A., Oliviera, G.C., et al., 2001. Transmission network expansion planning under a tabu search approach. IEEE Trans. Power Syst., 16(1):62鈥?8. [doi:10.1109/59.910782]CrossRef
    Department of Alternative Energy Development and Efficiency (DEDE), 2012. Alternative Energy Development Plan: AEDP 2012鈥?021. Ministry of Energy, Thailand.
    Dusonchet, Y.P., El-Abiad, A.H., 1973. Transmission planning using discrete dynamic optimization. IEEE Trans. Power Appar. Syst., PAS-92(4):1358鈥?371. [doi:10.1109/TPAS.1973.293543]CrossRef
    Ekwue, A.O., Cory, B.J., 1984. Transmission system expansion planning by interactive methods. IEEE Trans. Power Appl. Syst., PAS-103(7):1583鈥?591. [doi:10.1109/TPAS.1984.318637]CrossRef
    Escobar, A.H., Gallego, R.A., Romero, R., 2004. Multistage and coordinated planning of the expansion of transmission systems. IEEE Trans. Power Syst., 19(2):735鈥?44. [doi:10.1109/TPWRS.2004.825920]CrossRef
    Fuchs, I., V枚ller, S., Gjengedal, T., 2011. Improved method for integrating renewable energy sources into the power system of northern Europe: transmission expansion planning for wind power integration. 10th Int. Conf. on Environment and Electrical Engineering, p.1鈥?. [doi:10.1109/EEEIC.2011.5874642]
    Grainger, J., William, S.J., 1994. Power System Analysis. McGraw Hill, Singapore.
    Hajimiragha, A.H., Ca帽izares, C.A., Fowler, M.W., et al., 2011. A robust optimization approach for planning the transition to plug-in hybrid electric vehicles. IEEE Trans. Power Syst., 26(4):2264鈥?274. [doi:10.1109/TPWRS.2011.2108322]CrossRef
    Jabr, R.A., 2013. Robust transmission network expansion planning with uncertain renewable generation and loads. IEEE Trans. Power Syst., 28(4):4558鈥?567. [doi:10.1109/TPWRS.2013.2267058]CrossRef
    Katdee, A., 2010. Tabu Searching. Rangsit University, Thailand.
    Khatib, H., 2003. Economic Evaluation of Projects in the Electricity Supply Industry. The Institution of Engineering and Technology, London, England.CrossRef
    Latorre, G., Cruz, R.D., Areiza, J.M., et al., 2003. Classification of publications and models on transmission expansion planning. IEEE Trans. Power Syst., 18(2):938鈥?46. [doi:10.1109/TPWRS.2003.811168]CrossRef
    Leite da Silva, A.M., Fonseca Manso, L.A., de Sousa Sales, W., et al., 2012. Chronological power flow for planning transmission systems considering intermittent sources. IEEE Trans. Power Syst., 27(4):2314鈥?322. [doi:10.1109/TPWRS.2012.2203830]CrossRef
    Monticelli, A., Santos, A.Jr., Pereira, M.V.F., et al., 1982. Interactive transmission network planning using a leasteffort criterion. IEEE Trans. Power Appar. Syst., PAS-101(10):3919鈥?925. [doi:10.1109/TPAS.1982.317043]CrossRef
    Mori, H., Sone, Y., 2001. A parallel tabu search based approach to transmission network expansion planning. IEEE Porto Power Tech Conf. [doi:10.1109/PTC.2001.964744]
    Mu帽oz, C., Sauma, E., Contreras, J., et al., 2012. Impact of high wind power penetration on transmission network expansion planning. IET Gener. Transm. Distrib., 6(12): 1281鈥?291. [doi:10.1049/iet-gtd.2011.0552]CrossRef
    Rezaee Jordehi, A., 2014a. A chaotic-based big bang鈥揵ig crunch algorithm for solving global optimization problems. Neur. Comput. Appl., 25(6):1329鈥?335. [doi:10.1007/s00521鈥?14-1613鈥?]CrossRef
    Rezaee Jordehi, A., 2014b. Optimal setting of TCSCs in power systems using teaching-learning-based optimisation algorithm. Neur. Comput. Appl., 26(5):1249鈥?256. [doi:10.1007/s00521鈥?14-1791-x]CrossRef
    Rezaee Jordehi, A., 2015a. Brainstorm optimisation algorithm (BSOA): an efficient algorithm for finding optimal location and setting of FACTS devices in electric power. Int. J. Electr. Power Energy Syst., 69:48鈥?7. [doi:10.1016/j.ijepes.2014.12.083]CrossRef
    Rezaee Jordehi, A., 2015b. Chaotic bat swarm optimisation (CBSO). Appl. Soft Comput., 26:523鈥?30. [doi:10.1016/j.asoc.2014.10.010]CrossRef
    Rezaee Jordehi, A., 2015c. Enhanced leader PSO (ELPSO): a new algorithm for allocating distributed TCSC鈥檚 in power systems. Int. J. Electr. Power Energy Syst., 64:771鈥?84. [doi:10.1016/j.ijepes.2014.07.058]CrossRef
    Rezaee Jordehi, A., 2015d. Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems. Appl. Soft Comput., 26:401鈥?17. [doi:10.1016/j.asoc.2014.10.026]CrossRef
    Rider, M.J., Garcia, A.V., Romero, R., 2007. Power system transmission network expansion planning using AC model. IET Gener. Transm. Distrib., 1(5):731鈥?42. [doi:10.1049/iet-gtd:20060465]CrossRef
    Romero, R., Gallego, R.A., Monticelli, A., 1996. Transmission system expansion planning by simulated annealing. IEEE Trans. Power Syst., 11(1):364鈥?69. [doi:10.1109/59.486119]CrossRef
    Saric, A.T., Stankovic, A.M., 2009. A robust algorithm for volt/var control. IEEE Power Systems Conf. and Exposition, p.1鈥?. [doi:10.1109/PSCE.2009.4840211]
    Sepasian, M.S., Seifi, H., Foroud, A.A., et al., 2006. A new approach for substation expansion planning. IEEE Trans. Power Syst., 21(2):997鈥?004. [doi:10.1109/TPWRS.2006.873406]CrossRef
    Stoll, H.G., 1989. Least-Cost Electric Utility Planning. John Wiley & Sons, New York, United States.
    Sullivan, W.G., Wicks, E.M., Luxhoj, J.T., 2003. Engineering Economy. Pearson Education, New Jersey, USA.
    University of York, 2004. Orthogonal Arrays (Taguchi Designs). Available from http://鈥媤ww.鈥媦ork.鈥媋c.鈥媢k/鈥媎epts/鈥媘aths/鈥媡ables/鈥媜rthogonal.鈥媓tm [Accessed on June 20, 2014].
    Youssef, H.K., Hackam, R., 1989. New transmission planning model. IEEE Trans. Power Syst., 4(1):9鈥?8. [doi:10.1109/59.32451]CrossRef
    Yu, H., Rosehart, W.D., 2012. An optimal power flow algorithm to achieve robust operation considering load and renewable generation uncertainties. IEEE Trans. Power Syst., 27(4):1808鈥?817. [doi:10.1109/TPWRS.2012.2194517]CrossRef
    Yu, H., Chung, C.Y., Wong, K.P., et al., 2009. A chance constrained transmission network expansion planning method with consideration of load and wind farm uncertainties. IEEE Trans. Power Syst., 24(3):1568鈥?576. [doi:10.1109/TPWRS.2009.2021202]CrossRef
    Yu, H., Chung, C.Y., Wong, K.P., 2011. Robust transmission network expansion planning method with Taguchi鈥檚 orthogonal array testing. IEEE Trans. Power Syst., 26(3): 1573鈥?580. [doi:10.1109/TPWRS.2010.2082576]CrossRef
    Zahedi, A., 2012. Performance evaluation of wind turbine using Monte Carlo method and turbine power curve. Int. Power and Energy Conf., p.161鈥?65. [doi:10.1109/ASSCC.2012.6523257]
  • 作者单位:Rongrit Chatthaworn (1)
    Surachai Chaitusaney (1)

    1. Department of Electrical Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
  • 刊物类别:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization
  • 刊物主题:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization and Communication Networks; Electronics and Microelectronics, Instrumentation; Communications Engine
  • 出版者:Zhejiang University Press
  • ISSN:2095-9230
文摘
We propose a new robust optimization approach to evaluate the impact of an intermittent renewable energy source on transmission expansion planning (TEP). The objective function of TEP is composed of the investment cost of the transmission line and the operating cost of conventional generators. A method to select suitable scenarios representing the intermittent renewable energy generation and loads is proposed to obtain robust expansion planning for all possible scenarios. A meta-heuristic algorithm called adaptive tabu search (ATS) is employed in the proposed TEP. ATS iterates between the main problem, which minimizes the investment and operating costs, and the subproblem, which minimizes the cost of power generation from conventional generators and curtailments of renewable energy generation and loads. The subproblem is solved by nonlinear programming (NLP) based on an interior point method. Moreover, the impact of an intermittent renewable energy source on TEP was evaluated by comparing expansion planning with and without consideration of a renewable energy source. The IEEE Reliability Test System 79 (RTS 79) was used for testing the proposed method and evaluating the impact of an intermittent renewable energy source on TEP. The results show that the proposed robust optimization approach provides a more robust solution than other methods and that the impact of an intermittent renewable energy source on TEP should be considered. Keywords Adaptive tabu search Renewable energy generation Robust optimization Transmission expansion planning

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700