用户名: 密码: 验证码:
Higher-order finite volume method with semi-Lagrangian scheme for one-dimensional conservation laws
详细信息    查看全文
  • 作者:Lang Wu (1)
    Songsong Li (1) (2)
    Boying Wu (1)

    1. Department of Mathematics
    ; Harbin Institute of Technology ; No. 92 ; West Da-Zhi Street ; Harbin ; 150001 ; China
    2. School of Management
    ; Harbin Institute of Technology ; No. 92 ; West Da-Zhi Street ; Harbin ; 150001 ; China
  • 关键词:semi ; Lagrangian method ; WENO reconstructions ; Taylor expansion ; Euler system
  • 刊名:Advances in Difference Equations
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:2015
  • 期:1
  • 全文大小:1,313 KB
  • 参考文献:1. Cheng, J, Shu, C-W (2008) A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equations. Commun. Comput. Phys. 4: pp. 1008-1024
    2. Mohammadian, A, Le Roux, D (2006) Conservative semi-implicit semi-Lagrangian scheme for simulation of shallow flows. Comput. Phys. Commun. 174: pp. 99-108 CrossRef
    3. Restelli, M, Bonaventura, L, Sacco, R (2006) A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows. J. Comput. Phys. 216: pp. 195-215 CrossRef
    4. Wang, B, Zhao, G, Fringer, O (2011) Reconstruction of vector fields for semi-Lagrangian advection on unstructured staggered grids. Ocean Model. 40: pp. 52-71 CrossRef
    5. Luo, H, Baum, J, L枚hner, R (2004) On the computation of multi-material flows using ALE formulation. J. Comput. Phys. 194: pp. 304-328 CrossRef
    6. Cheng, J, Shu, C-W (2007) A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. J.聽Comput. Phys. 227: pp. 1567-1596 CrossRef
    7. Liu, W, Cheng, J, Shu, C-W (2009) High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228: pp. 8872-8891 CrossRef
    8. Cheng, J, Shu, C-W (2010) A cell-centered Lagrangian scheme with the preservation of symmetry and conservation proprieties for compressible fluid flows in two-dimensional cylindrical geometry. J. Comput. Phys. 229: pp. 7191-7206 CrossRef
    9. Cheng, J, Shu, C-W (2010) A Lagrangian scheme with the preservation of symmetry and conservation in cylindrical geometry: preliminary study. Proc. Comput. Sci. 1: pp. 1903-1911 CrossRef
    10. Cheng, C, Knorr, G (1976) The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22: pp. 330-351 CrossRef
    11. Crouseilles, N, Respaud, T, Sonnendrucker, E (2009) A forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Comput. Phys. Commun. 180: pp. 1730-1745 CrossRef
    12. Crouseilles, N, Mehrenberger, M, Sonnendrucker, E (2010) Conservative semi-Lagrangian schemes for Vlasov equation. J.聽Comput. Phys. 229: pp. 1927-1953 CrossRef
    13. Acar, R (2009) Oscillation-free advection of interfaces with high order semi-Lagrangian schemes. Comput. Fluids 38: pp. 137-159 CrossRef
    14. Nair, R, Scroggs, J, Semazzi, F (2003) A forward-trajectory global semi-Lagrangian transport scheme. J. Comput. Phys. 190: pp. 275-294 CrossRef
    15. White, J, Dongarra, J (2011) High-performance high-resolution semi-Lagrangian tracer transport on a sphere. J. Comput. Phys. 230: pp. 6778-6799 CrossRef
    16. Qiu, J-M, Shu, C-W (2011) Positivity preserving semi-Lagrangian discontinuous Galerkin formulation. J. Comput. Phys. 230: pp. 8386-8409 CrossRef
    17. Qiu, J-M, Christlieb, A (2010) A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229: pp. 1130-1149 CrossRef
    18. Qiu, J-M, Shu, C-W (2011) Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230: pp. 863-889 CrossRef
    19. Qiu, J-M, Shu, C-W (2011) Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation. Commun. Comput. Phys. 10: pp. 979-1000
    20. Rossmanith, J, Seal, D (2011) A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations. J. Comput. Phys. 230: pp. 6203-6232 CrossRef
    21. Liu, X, Osher, S, Chan, T (1994) Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115: pp. 200-212 CrossRef
    22. Jiang, G, Shu, C-W (1996) Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126: pp. 202-228 CrossRef
    23. Montranal, P, Shu, C-W (1999) Real gas computation using an energy relaxation method and high-order WENO schemes. J.聽Comput. Phys. 148: pp. 59-80 CrossRef
    24. Shu, C-W, Osher, S (1988) Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77: pp. 439-471 CrossRef
    25. Zhu, J, Qiu, J, Liu, T, Khoo, BC (2011) RKDG methods with WENO type limiters and conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations. Appl. Numer. Math. 61: pp. 554-580 CrossRef
    26. Shu, C-W Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A eds. (1998) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Springer, Berlin, pp. 325-432 CrossRef
    27. Ii, S, Xiao, F (2007) CIP/multi-moment finite volume method for Euler equations: a semi-Lagrangian characteristic formulation. J. Comput. Phys. 222: pp. 849-871 CrossRef
    28. Shi, J, Hu, C, Shu, C-W (2002) A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175: pp. 108-127 CrossRef
  • 刊物主题:Difference and Functional Equations; Mathematics, general; Analysis; Functional Analysis; Ordinary Differential Equations; Partial Differential Equations;
  • 出版者:Springer International Publishing
  • ISSN:1687-1847
文摘
In this paper, a high-order, semi-Lagrangian finite volume (SL-FV) method based on the WENO approach is proposed in order to manage one-dimensional conservation laws. The proposed method successfully integrates WENO reconstructions and the semi-Lagrangian method. More specifically, the Taylor expansion of time is used to approximate the time integration, deployed to boost temporal accuracy. Next, characteristic curves are applied to replace the time level by points in the semi-Lagrangian method. The value of these points can then be reconstructed by WENO schemes to increase their accuracy in space. Both high-order accuracies in space and time, respectively, are achieved. Moreover, computational experiments allow for a weaker CFL condition, provided in detail to validate the performance of the proposed SL-FV-based WENO method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700