用户名: 密码: 验证码:
Hydrogen Plasmas Processing of Graphene Surfaces
详细信息    查看全文
  • 作者:Emilie Despiau-Pujo ; Alexandra Davydova…
  • 关键词:Plasma–surface interaction ; Graphene ; Hydrogen plasmas ; Molecular dynamics
  • 刊名:Plasma Chemistry and Plasma Processing
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:36
  • 期:1
  • 页码:213-229
  • 全文大小:1,514 KB
  • 参考文献:1.Sun Z, James DK, Tour JM (2011) J Phys Chem Lett 2:2425–2432CrossRef
    2.Schwierz F (2010) Nat Nanotechnol 5:487–496CrossRef
    3.Segal M (2012) Nature 483:S43–S44CrossRef
    4.Biró LP, Nemes-Incze P, Lambin P (2012) Nanoscale 4:1824CrossRef
    5.Eda G et al (2008) Nat Nanotechnol 3(5):270–274CrossRef
    6.Li X et al (2010) Adv Mater 22:2743–2748CrossRef
    7.Schedin F et al (2007) Nat Mater 6:652–655CrossRef
    8.Geim AK, Novoselov KS (2007) Nat Mater 6:183–191CrossRef
    9.Ryu S, Han MY, Maultzsch J, Heinz TF et al (2008) Nano Lett 8:4597–4602CrossRef
    10.Elias DC, Nair RR, Mohiuddin TMG et al (2009) Science 323:610CrossRef
    11.Robinson JT et al (2010) Nano Lett 10:3001–3005CrossRef
    12.Leenaerts O, Peelaers H, Hernandez-Nieves AD et al (2010) Phys Rev B 82:195436CrossRef
    13.Ci L et al (2010) Nat Mater 9:430–435CrossRef
    14.Son YW, Cohen ML, Louie SG (2006) Phys Rev Lett 97:216803CrossRef
    15.Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Phys Rev B 54:17954CrossRef
    16.Han M, Ozyilmaz B, Zhang Y, Kim P (2007) Phys Rev Lett 98:206805CrossRef
    17.Berger C, Song Z, Li X et al (2006) Science 312:1191–1196CrossRef
    18.Lin YC, Lu CC, Yeh CH et al (2012) Nano Lett 12(1):414–419CrossRef
    19.Lindvall N, Kalabukhov A, Yurgens A (2012) J Appl Phys 111:064904CrossRef
    20.Yang R, Zhang L, Wang Y et al (2010) Adv Mater 22:4014–4019CrossRef
    21.Wang X, Dai H (2010) Nat Chem 2:661–665CrossRef
    22.Diankov G et al (2013) ACS Nano 7(2):1324–1332CrossRef
    23.Xie L, Jiao L, Dai H (2010) J Am Chem Soc 132:14751–14753CrossRef
    24.Cheng ZG et al (2011) Nano Lett 11:767–771CrossRef
    25.Peltekis N et al (2012) Carbon 50:395–403CrossRef
    26.Brenner DW, Shenderova OA, Harrison JA et al (2002) J Phys: Condens Matter 14:783
    27.Despiau-Pujo E, Davydova A, Cunge G et al (2013) J Appl Phys 113:114302CrossRef
    28.Sinnot SB et al (1998) Carbon 36:1–9CrossRef
    29.Cheng CC et al (1994) J Vac Sci Technol, A 12:2630CrossRef
    30.Humbird D, Graves DB (2005) J Vac Sci Technol, A 23:31CrossRef
    31.Berendsen HJC et al (1984) J Chem Phys 81:3684CrossRef
    32.Voter A, Montalenti F, Germann T (2002) Annu Rev Mater Res 32:321–346CrossRef
    33.Neyts EC, Bogaerts A (2013) Theor Chem Acc 132:1320CrossRef
    34.Ehemann RC, Krstić PS, Dadras J et al (2012) Nanoscale Res Lett 7:198CrossRef
    35.Saito S, Ito A, Nakamura H (2011) J Appl Phys 110:084320CrossRef
    36.Sljivancanin Z (2009) J Chem Phys 131:084706CrossRef
    37.Ivanovskaya VV, Zobelli A, Teillet-Billy D et al (2010) Eur Phys J B 76:481–486CrossRef
    38.Chen L, Cooper AC, Pez GP et al (2007) J Phys Chem C 111:18995–19000CrossRef
    39.Ruffieux P, Groning O, Bielmann M et al (2002) Phys Rev B 66:245416CrossRef
    40.Ruffieux P, Gröning O, Schwaller P et al (2000) Phys Rev Lett 84:4910CrossRef
    41.Areou E, Cartry G, Layet JM, Angot T (2011) J Chem Phys 134:014701CrossRef
    42.Luo ZQ et al (2009) ACS Nano 3:1781–1788CrossRef
    43.Brihoum M et al (2013) J Vac Sci Technol A 31:020604CrossRef
    44.Hansen TAR, Weber JW, Colsters PGJ et al (2012) J Appl Phys 112:0133302CrossRef
    45.Ponomarenko LA, Schedin F, Katsnelson MI et al (2008) Science 320:356–358CrossRef
    46.Chen Z, Lin Y, Rooks M, Avouris P (2007) Phys E 40:228–232CrossRef
    47.Davydova A, Despiau-Pujo E, Cunge G, Graves DB (2015) J Phys D 48:195202CrossRef
    48.Talyzin AV, Luzan S, Anoshkin IV et al (2011) ACS Nano 5(6):5132–5140CrossRef
    49.Dos Santos RPB et al (2012) Nanotechnology 23:465702CrossRef
    50.Lee GD, Wang CZ et al (2010) Phys Rev B 81:195419CrossRef
    51.Chuvilin A, Meyer JC, Algara-Siller G, Kaiserew U (2009) New J Phys 11:083019CrossRef
    52.Jin C, Lan H, Peng L et al (2009) Phys Rev Lett 102:205501CrossRef
    53.Borodin VA et al (2011) Phys Rev B 84:075486CrossRef
    54.Ferro Y et al (2003) Chem Phys Lett 368:609CrossRef
    55.McKay H (2010) Phys Rev B 81:075425CrossRef
    56.Naeemi A, Meindl JD (2009) IEEE Trans Electron Devices 56:1822–1833CrossRef
    57.Chen X, Akinwande D et al (2010) IEEE Trans Electron Devices 57:3137–3143CrossRef
    58.Pal AN, Ghosh A (2009) Appl Phys Lett 95:082105-1–082105-3CrossRef
    59.Shih C-J, Vijayaraghavan A et al (2011) Nat Nanotechnol 6:439–445CrossRef
    60.Hazra KS et al (2011) Nanotechnology 22:025704CrossRef
    61.Fredriksson H, Chakarov D, Kasemo B (2009) Carbon 47:1335–1342CrossRef
    62.Lim WS et al (2012) Carbon 50:429–435CrossRef
    63.Tozzini V, Pellegrini V (2013) Phys Chem Chem Phys 15:80CrossRef
    64.Sofo JO, Chaudhari AS, Barber GD (2007) Phys Rev B 75:153401CrossRef
    65.Ito A, Wang Y et al (2009) J Nucl Mater 390–391:183–187CrossRef
    66.Hornekær L, Sljivancanin Z et al (2006) Phys Rev Lett 96:156104CrossRef
    67.Khazaei M, Bahramy MS, Ranjbar A et al (2009) Carbon 47:3306–3312CrossRef
    68.Lebegue S et al (2009) Phys Rev B 79:245117CrossRef
    69.Schiesko L, Carrere M, Cartry G, Layet JM (2008) Plasma Sources Sci Technol 17:035023CrossRef
    70.Felten A et al (2014) Appl Phys Lett 105:183104CrossRef
    71.Brichon P, Despiau-Pujo E, Mourey O, Joubert O (2015) J Appl Phys 118:053303CrossRef
    72.Cunge G, Ferrah D et al (2015) J Appl Phys 118:123302CrossRef
  • 作者单位:Emilie Despiau-Pujo (1)
    Alexandra Davydova (1)
    Gilles Cunge (1)
    David B. Graves (2)

    1. LTM, Univ. Grenoble Alpes, CNRS, CEA-Leti Minatec, 38054, Grenoble, France
    2. Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Characterization and Evaluation Materials
    Mechanical Engineering
    Inorganic Chemistry
    Nuclear Physics, Heavy Ions and Hadrons
  • 出版者:Springer Netherlands
  • ISSN:1572-8986
文摘
To assist the development of plasma processes to pattern graphene in a controlled way, interactions between hydrogen plasma species (H, H+, H2 +) and various types of graphene surfaces (monolayer, nanoribbons, multilayer) are investigated using atomic-scale simulations. It is shown that only “hot” H particles (i.e., with a kinetic energy greater than ~0.4 eV at 300 K) can adsorb on the basal plane of surface-clean graphene while adsorption is barrierless on free edges or vacancies. Surface reaction probabilities (reflection, adsorption, penetration) are found to strongly vary with the incident species energy, which allows to determine specific energy ranges (or process windows) for different types of H2 plasma treatment: lateral etching of graphene nanoribbons (GNRs), cleaning of graphene surfaces or vertical etching of multilayer graphene (MLG) stacks. Molecular dynamics simulations of GNRs trimming in downstream H2 plasmas allow to understand the mechanism which governs the anisotropic etching of ribbons and explains the absence of line-edge roughness on their edges. Interactions between low-energy (5–25 eV) H x + (x = 1, 2) ions with MLG are also investigated. Ion-induced damage (hydrogenation of successive graphene sheets, creation of vacancies) and etching of the MLG stack are found to vary with the ion energy, the ion fluence and the ion composition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700