用户名: 密码: 验证码:
Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method
详细信息    查看全文
  • 作者:Shaochun Dong (1) (2)
    Sergey Samsonov (2)
    Hongwei Yin (1)
    Shujun Ye (1)
    Yanrong Cao (3)
  • 关键词:Land subsidence ; SBAS ; Time ; series analysis ; InSAR ; Shanghai ; China
  • 刊名:Environmental Earth Sciences
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:72
  • 期:3
  • 页码:677-691
  • 全文大小:26,708 KB
  • 参考文献:1. Amelung F, Galloway DL, Bell JW, Zebker HA, Laczniak RL (1999) Sensing the ups and downs of Las Vegas—InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27(6):483-86 CrossRef
    2. Bawden GW, Thatcher W, Stein RS, Hudnut KW, Peltzer G (2001) Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature 412:812-15 CrossRef
    3. Becker RH, Sultan M (2009) Land subsidence in the Nile delta: inferences from radar interferometry. Holocene 19(6):949-54 CrossRef
    4. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375-383 CrossRef
    5. Casu F, Manzo M, Lanari R (2006) A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens Environ 102(3-):195-10 CrossRef
    6. Chen X, Zong Y (1998) Coastal erosion along the Changjiang deltaic shoreline, China: history and prospective, Estuarine. Coast Shelf Sci 46(5):733-42 CrossRef
    7. Chen J, Wu J, Zhang L, Zou J, Liu G, Zhang R (2013) Deformation trend extraction based on multi-temporal InSAR in Shanghai. Remote Sens 5(4):1774-786 CrossRef
    8. Costantini M, Rosen P (1999) A generalized phase unwrapping approach for sparse data. Proceedings International Geoscience Remote Sensing Symposium, Hamburg, pp 267-69
    9. Damoah-Afari P (2006) Detecting ground settlement of magacities using InSAR techniques. Dissertation. The Hong Kong Polytechnic University, Hong Kong
    10. Deng B, Fan DD (2002) Sea level rise and its impact on sustainable development of Shanghai city. J Tongji Univ 30(11):1321-325 [in Chinese]
    11. Duzgun HS, Demirel N (2011) Remote sensing of the mine environment. CRC Press, Balkema, The Netherlands
    12. El-Asmar HM, Hereher ME (2011) Change detection of the coastal zone east of the Nile Delta using remote sensing. Environ Earth Sci 62(4):769-77 CrossRef
    13. Farr T, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. EOS Trans AGU 81:583-85 CrossRef
    14. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8-0 CrossRef
    15. Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res 94(B7):9183-191 CrossRef
    16. Galloway DL, Hudnut KW, Ingebritsen SE, Phillips SP, Peltzer G, Rogez F, Rosen PA (1998) Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour Res 34(10):2573-585 CrossRef
    17. Galloway D, Jones DR, Ingebritsen SE (Ed) (1999) Land Subsidence in the US. US Geological Survey, Circular 1182
    18. Glowacka E, Sarychikhina O, Suarez F, Nava FA, Mellors R (2010) Anthropogenic subsidence in the Mexicali Valley, Baja California, Mexico, and slip on the Saltillo fault. Environ Earth Sci 59(7):1515-524 CrossRef
    19. Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035-038 CrossRef
    20. Hoffmann J, Zebker HA, Galloway DL, Amelung F (2001) Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour Res 37(6):1551-566 CrossRef
    21. Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:L16302 CrossRef
    22. Hu RL, Yue ZQ, Wang LC, Wang SJ (2004) Review on current status and challenging issues of land subsidence in China. Eng Geol 76(1-):65-7 CrossRef
    23. Hu J, Li Z, Ding X, Zhu J, Sun Q (2013) Spatial–temporal surface deformation of Los Angeles over 2003-007 from weighted least squares DInSAR. Int J Appl Earth Obs Geoinf 21:484-92 CrossRef
    24. Jiang L, Lin H, Cheng S (2011a) Monitoring and assessing reclamation settlement in coastal areas with advanced InSAR techniques: Macao city (China) case study. Int J Remote Sens 32(13):3565-588 CrossRef
    25. Jiang L, Lin H, Ma J, Kong B, Wang Y (2011b) Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study. Remote Sens Environ 115(2):257-68 CrossRef
    26. Lanari R, Lundgren P, Manzo M, Casu F (2004a) Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California. Geophys Res Lett 31(23):L23613 CrossRef
    27. Lanari R, Mora O, Manunta M, Mallorqui JJ, Berardino P, Sansosti E (2004b) A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. Geosci Remote Sens 42(7):1377-386 CrossRef
    28. Lanaria R, Casua F, Manzoa M, Lundgrend P (2007) Application of the SBAS-DInSAR technique to fault creep: a case study of the Hayward fault, California. Remote Sens Environ 109(1):20-8 CrossRef
    29. Lopez-Quiroz P, Doin MP, Tupin F, Briole P, Nicolas JM (2009) Time series analysis of Mexico City subsidence constrained by radar interferometry. J Appl Geophys 69(1):1-5 CrossRef
    30. Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the earth’s surface. Rev Geophys 36:441-00 CrossRef
    31. Ng AHM, Ge L, Yan Y, Li X, Chang HC, Zhang K, Rizos C (2010) Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia. Eng Geol 115(1-):1-5 CrossRef
    32. Perissin D, Wang Z, Lin H (2012) Shanghai subway tunnels and highways monitoring through cosmo-skymed persistent scatterers. J Photogrammery Remote Sens 73:58-7 CrossRef
    33. Samsonov S (2010) Topographic correction for ALOS PALSAR intergerometry. IEEE Trans Geosci Remote Sens 48(7):3020-027 CrossRef
    34. Samsonov S, Tiampo K, Gonzalez PJ, Manville V, Jolly G (2010) Ground deformation occurring in the city of Auckland, New Zealand, and observed by Envisat interferometric synthetic aperture radar during 2003-007. J Geophys Res 115(B8):B08410
    35. Samsonov S, van der Koij M, Tiampo K (2011) A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique. Comput Geosci 37(8):1083-091 CrossRef
    36. Samsonov S, d’Oreye N, Smets B (2013) Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method. Int J Appl Earth Obs Geoinf 23:142-54 CrossRef
    37. Schmidt DA, Bürgmann R (2003) Time dependent land uplift and subsidence in the Santa Clara Valley, California, from a large InSAR data set. J Geophys Res 108(B9):ETG 4-–ETG 4-3
    38. Shi X, Wu J, Ye S, Zhang Y, Xue Y, Wei Z, Li Q, Yu J (2008) Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City, China. Eng Geol 100(1-):27-2 CrossRef
    39. Sneed M, Brandt JT (2007) Detection and measurement of land subsidence using global positioning system surveying and interferometric synthetic aperture radar, Coachella Valley, California, 1996-005. Scientific Investigations Report 2007-251. US Geological Survey. http://pubs.usgs.gov/sir/2007/5251/index.html. Accessed 21 July, 2013
    40. Sun WS (2002) Investigation report on prevention and control of land subsidence in Yangtse Delta (in Chinese). In: Wei ZX, Li QF (eds) Proceedings of the national symposium on land subsidence. Shanghai Institute of Geology Survey, Shanghai, pp 1-2
    41. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J et al (2009) Sinking deltas due to human activities. Nat Geosci 2(10):681-86 CrossRef
    42. Tornqvist T, Wallace DJ, Storms JEA, Wallinga J, Van Dam RL, Blaauw M, Derksen MS, Klerks CJW, Meijneken C, Snijders MA (2008) Mississippi delta subsidence primarily caused by compaction of Holocene strata. Nat Geosci 1(3):173-76 CrossRef
    43. Usai S (2003) A least squares database approach for SAR interferometric data. IEEE Trans Geosci Remote Sens 41(4):753-60 CrossRef
    44. Wang JX, Feng B, Hu LS, Tang YQ, Yan XX, Wang HM, Liu JB (2013a) Application of geo-environmental capacity of ground building in urban planning. Environ Earth Sci 69(1):93-02 CrossRef
    45. Wang G, Xie M, Chai X, Wang L, Dong C (2013b) D-InSAR-based landslide location and monitoring at Wudongde hydropower reservoir in China. Environ Earth Sci 69(8):2763-777 CrossRef
    46. Wegmuller U, Werner C (1997) Gamma SAR processor and interferometry software. Third ERS Symposium on Space at the Service of our Environment, Florence
    47. Wu T, Kang JC, Li WJ, Meng F, An Y, Wang TT (2007) Advance of sea level change research in China. Maring Geol Quaternary Geol 27(4):123-30 [in Chinese]
    48. Wu J, Shi X, Xue Y, Zhang Y, Wei Z, Yu J (2008) The development and control of the land subsidence in the Yangtze Delta, China. Environ Geol 55(8):1725-735 CrossRef
    49. Wu JC, Shi XQ, Ye SJ, Xue YQ, Zhang Y, Yu J (2009) Numerical simulation of land subsidence induced by groundwater overexploitation in Su-Xi-Chang area, China. Environ Geol 57(6):1409-421 CrossRef
    50. Wu J, Zhang L, Chen J, Li T (2012) Monitoring ground subsidence in Shanghai maglev area using two kinds of SAR data. J Appl Geodesy 6(3-):209-13
    51. Xu YS, Shen SL, Cai ZY, Zhou GY (2008) The state of land subsidence and prediction approaches due to groundwater withdrawal in China. Nat Hazards 45(1):123-35 CrossRef
    52. Xue YQ, Zhang Y, Ye SJ, Wu JC, Li QF (2005) Land subsidence in China. Environ Geol 48:713-20 CrossRef
    53. Zhang L, Wu J, Li T, Chen J (2012) Monitoring ground deformation based on small baseline approach in Shanghai. J Tongji Univ 40(10):1564-568 [in Chinese]
  • 作者单位:Shaochun Dong (1) (2)
    Sergey Samsonov (2)
    Hongwei Yin (1)
    Shujun Ye (1)
    Yanrong Cao (3)

    1. School of Earth Science and Engineering, Nanjing University, Nanjing, 210093, China
    2. Natural Resources Canada, Ottawa, ON, K1A0Y7, Canada
    3. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China
  • ISSN:1866-6299
文摘
River delta plains (deltas) are susceptible to subsidence producing undesirable environmental impact and affecting dense population. The City of Shanghai, located in the easternmost of Yangtze Delta in China, is one of the most developed regions in China that experiences the greatest land subsidence. Excessive groundwater withdrawal is thought to be the primary cause of the land subsidence, but rapid urbanization and economic development, mass construction of skyscrapers, metro lines and highways are also contributing factors. In this paper, a spatial–temporal analysis of the land subsidence in Shanghai was performed with the help of the Small Baseline Subset Interferometric Synthetic Aperture Radar. Twenty l-band ALOS PALSAR images acquired during 2007-010 were used to produce a linear deformation rate map and to derive time series of ground deformation. The results show homogeneous subsidence within the research area, but exceptionally rapid subsidence around skyscrapers, along metro lines, elevated roads and highways was also observed. Because groundwater exploitation and rapid urbanization responsible for much of the subsidence in the Shanghai region are expected to continue, future subsidence monitoring is warranted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700