用户名: 密码: 验证码:
A new extended pre-fracture zone model for a limited permeable crack in an interlayer between magnetoelectroelastic materials
详细信息    查看全文
  • 作者:P. Ma (1)
    R. K. L. Su (1)
    W. J. Feng (2)

    1. Department of Civil Engineering
    ; The University of Hong Kong ; Hong Kong ; People鈥檚 Republic of China
    2. Department of Engineering Mechanics
    ; Shijiazhuang Tiedao University ; Shijiazhuang ; 050043 ; People鈥檚 Republic of China
  • 刊名:Acta Mechanica
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:226
  • 期:4
  • 页码:1045-1065
  • 全文大小:758 KB
  • 参考文献:1. Parton, V.Z., Kudryavtsev, B.A. (1988) Electromagnetoelasticity. Gordon and Breach Science Publishers, New York
    2. Zhou, Z.G., Wang, B., Sun, Y.G. (2004) Two collinear interface cracks in magneto-electro-elastic composites. Int. J. Eng. Sci. 42: pp. 1155-1167 CrossRef
    3. Gao, C.F., Tong, P., Zhang, T.Y. (2004) Fracture mechanics for a mode III crack in a magnetoelectroelastic solid. Int. J. Solids Struct. 41: pp. 6613-6629 CrossRef
    4. Hu, K.Q., Li, G.Q. (2005) Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading. Int. J. Solids Struct. 42: pp. 2823-2835 CrossRef
    5. Feng, W.J., Su, R.K.L. (2006) Dynamic internal crack problem of a functionally graded magneto-electro-elastic strip. Int. J. Solids Struct. 43: pp. 5196-5216 CrossRef
    6. Feng, W.J., Pan, E., Wang, X. (2007) Dynamic fracture analysis of a penny-shaped crack in a magnetoelectroelastic layer. Int. J. Solids Struct. 44: pp. 7955-7974 CrossRef
    7. Feng, W.J., Su, R.K.L., Pan, E. (2007) Fracture analysis of a penny-shaped magnetically dielectric crack in a magnetoelectroelastic material. Int. J. Fract. 146: pp. 125-138 CrossRef
    8. Wang, B.L., Han, J.C., Mai, Y.W. (2006) Mode III fracture of a magnetoelectroelastic layer: exact solution and discussion of the crack face electromagnetic boundary conditions. Int. J. Fract. 139: pp. 27-38 CrossRef
    9. Yong, H.D., Zhou, Y.H. (2007) Transient response of a cracked magnetoelectroelastic strip under anti-plane impact. Int. J. Solids Struct. 44: pp. 705-717 CrossRef
    10. Wang, B.L., Sun, Y.G., Zhang, H.Y. (2008) Analysis of a penny-shaped crack in magnetoelectroelastic materials. J. Appl. Phys. 103: pp. 083530 CrossRef
    11. Li, X.F. (2001) Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric magnetic impacts. Int. J. Solids Struct. 42: pp. 3185-3205 CrossRef
    12. Singh, B.M., Rokne, J., Dhaliwal, R.S. (2009) Closed-form solutions for two anti-plane collinear cracks in a magnetoelectroelastic layer. Eur. J. Mech. A Solid. 28: pp. 599-609 CrossRef
    13. Gao, C.F., Kessler, H., Balke, H. (2003) Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. Int. J. Eng. Sci. 41: pp. 969-981 CrossRef
    14. Gao, C.F., Kessler, H., Balke, H. (2003) Crack problems in magnetoelectroelastic solids. Part II: general solution of collinear cracks. Int. J. Solids Struct. 41: pp. 983-994
    15. Sih, G.C., Jones, R., Song, Z.F. (2003) Piezomagnetic and piezoelectric poling effects on mode I and II crack initiation behavior of magnetoelectroelastic materials. Theor. Appl. Fract. Mech. 40: pp. 161-186 CrossRef
    16. Tian, W.Y., Gabbert, U. (2005) Macrocrack鈥搈icrocrack interaction problem in magnetoelectroelastic solids. Mech. Mater. 37: pp. 565-592 CrossRef
    17. Zhou, Z.G., Zhang, P.W., Wu, L.Z. (2007) The closed form solution of a mode-I crack in the piezoelectric/piezomagnetic materials. Int. J. Solids Struct. 44: pp. 419-435 CrossRef
    18. Wang, B.L., Mai, Y.W. (2007) Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. Int. J. Solids Struct. 44: pp. 387-398 CrossRef
    19. Chen, X.H. (2009) Energy release rate and path-independent integral in dynamic fracture of magneto-electro-thermo-elastic solids. Int. J. Solids Struct. 46: pp. 2706-2711 CrossRef
    20. Zhong, X.C., Liu, F., Li, X.F. (2009) Transient response of a magnetoelectroelastic solid with two collinear dielectric cracks under impacts. Int. J. Solids Struct. 46: pp. 2950-2958 CrossRef
    21. Zhong, X.C., Zhang, K.S. (2010) Dynamic analysis of a penny-shaped dielectric crack in a magnetoelectroelastic solid under impacts. Eur. J. Mech. A Solids 29: pp. 242-252 CrossRef
    22. W眉nsche, M., S谩ez, A., Garc铆a-S谩nchez, F., Zhang, Ch. (2012) Transient dynamic crack analysis in linear magnetoelectroelastic solids by a hypersingular time-domain BEM. Eur. J. Mech. A Solids 32: pp. 118-130 CrossRef
    23. Gao, C.F., Noda, N. (2004) Thermal-induced interfacial cracking of magnetoelectroelastic material. Int. J. Eng. Sci. 42: pp. 1347-1360 CrossRef
    24. Li, R., Kardomateas, G.A. (2007) The mixed mode I and II interface crack in piezoelectromagneto-elastic anisotropic bimaterials. ASME J. Appl. Mech. 74: pp. 614-627 CrossRef
    25. Herrmann, K.P., Loboda, V.V., Khodanen, T.V. (2010) An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial. Arch. Appl. Mech. 80: pp. 651-670 CrossRef
    26. Feng, W.J., Ma, P., Pan, E., Liu, J.X. (2011) A magnetically impermeable and electrically permeable interface crack with a contact zone in a magnetoelectroelastic bimaterial under concentrated magnetoelectromechanical loads on the crack faces. Sci. China Phys. Mech. Astron. 54: pp. 1666-1679 CrossRef
    27. Ma, P., Feng, W.J., Su, R.K.L. (2012) An electrically impermeable and magnetically permeable interface crack with a contact zone in a magnetoelectroelastic bimaterial under uniform magnetoelectromechanical loads. Eur. J. Mech. A Solids 32: pp. 41-51 CrossRef
    28. Zhao, M.H., Li, N., Fan, C.Y., Xu, G.T. (2008) Analysis method of planar interface cracks of arbitrary shape in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. Int. J. Solids Struct. 45: pp. 1804-1824 CrossRef
    29. Zhu, B.J., Shi, Y.L., Qin, T.Y., Sukop, M., Yu, S.H., Li, Y.B. (2010) Mixed-mode stress intensity factors of 3D interface crack in fully coupled electromagnetothermoelastic multiphase composites. Int. J. Solids Struct. 46: pp. 2669-2679 CrossRef
    30. Ma, P., Feng, W.J., Su, R.K.L. (2013) Pre-fracture zone model on electrically impermeable and magnetically permeable interface crack between two dissimilar magnetoelectroelastic materials. Eng. Fract. Mech. 102: pp. 310-323 CrossRef
    31. Zhao, M.H., Fan, C.Y. (2008) Strip electric鈥搈agnetic breakdown model in magnetoelectroelastic medium. J. Mech. Phys. Solids. 56: pp. 3441-3458 CrossRef
    32. Fan, C.Y., Zhao, M.H. (2011) Nonlinear fracture of 2D magnetoelectroelastic media: analytical and numerical solutions. Int. J. Solids Struct. 48: pp. 2383-2392 CrossRef
    33. Bhargava, R.R., Gupta, S. (2012) Mathematical model for crack arrest of a transversely cracked piezoelectromagnetic strip-Part I. Appl. Math. Model. 36: pp. 3502-3512 CrossRef
    34. Loboda, V., Lapusta, Y., Sheveleva, A. (2010) Limited permeable crack in an interlayer between piezoelectric materials with different zones of electrical saturation and mechanical yielding. Int. J. Solids Struct. 47: pp. 1795-1806 CrossRef
    35. Loboda, V., Lapusta, Y., Sheveleva, A. (2007) Electro-mechanical pre-fracture zones for an electrically permeable interface crack in a piezoelectric biomaterial. Int. J. Solids Struct. 44: pp. 5538-5553 CrossRef
    36. Lapusta, Y., Loboda, V. (2009) Electro-mechanical yielding for a limited permeable crack in an interlayer between piezoelectric materials. Mech. Res. Commun. 36: pp. 183-192 CrossRef
    37. Tvergaard, V., Hutchinson, J.W. (1996) On the toughness of ductile adhesive joints. J. Mech. Phys. Solids 44: pp. 789-800 CrossRef
    38. Wang, T.C. (2000) Analysis of strip electric saturation model of crack problem in piezoelectric materials. Int. J. Solids Struct. 37: pp. 6031-6049 CrossRef
    39. Fan, C.Y., Zhao, Y.F., Zhao, M.H., Pan, E. (2012) Analytical solution of a semi-permeable crack in a 2D piezoelectric medium based on the PS model. Mech. Res. Commun. 40: pp. 34-40 CrossRef
    40. Gao, H., Zhang, T.Y., Tong, P. (1997) Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids. 45: pp. 491-510 CrossRef
    41. Sih, G.C., Song, Z.F. (2003) Magnetic and electric poling effects associated with crack growth in BaTiO3鈥揅oFe2O4 composite. Theor. Appl. Fract. Mech. 39: pp. 209-227 CrossRef
    42. Tian, W.Y., Rajapakse, R.K.N.D. (2005) Fracture analysis of magnetoelectroelastic solids by using path independent integrals. Int. J. Fract. 131: pp. 311-335 CrossRef
    43. Annigeri, A.R., Ganesan, N., Swarnamani, S. (2007) Free vibration behaviour of multiphase and layered magneto-electro-elastic beam. J. Sound Vib. 299: pp. 44-63 CrossRef
    44. Wang, B.L. (2012) Fracture and effective properties of finite magnetoelectroelastic media. J. Intell. Mater. Syst. Struct. 23: pp. 1699-1712 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics, Fluids and Thermodynamics
    Continuum Mechanics and Mechanics of Materials
    Structural Mechanics
    Vibration, Dynamical Systems and Control
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Wien
  • ISSN:1619-6937
文摘
This paper considers the plane problem for two identical semi-infinite magnetoelectroelastic (MEE) materials, which are adhered together by a thin interlayer. A limited permeable crack is assumed to form in the interlayer parallel to its faces, and the interlayer is softer than the adherent MEE materials. To avoid singularities in the vicinity of a crack, which do not exist in reality, the extended pre-fracture zones including three distinct zones, i.e., the mechanical yield zone, the electrical saturation zone and the magnetic saturation zone, of finite lengths are introduced as crack continuations. The problem is formulated mathematically as a system of three linear equations, which can be solved exactly. The unknown lengths of the extended pre-fracture zones are determined by requiring that the stress, the electrical displacement and the magnetic induction are all finite at the ends of these zones. The fracture parameters, such as the crack opening displacement, and the jumps in the electrical and/or magnetic potentials through the crack region as well as the energy release rate are obtained. All these parameters are presented in a simple explicit form which can be determined efficiently without complicated computation that makes the present results rather convenient for any theoretical analysis and engineering applications. Additionally, numerical results are presented to study the influence of various factors on fracture parameters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700