用户名: 密码: 验证码:
Composite stacking sequence optimization for aeroelastically tailored forward-swept wings
详细信息    查看全文
文摘
A method for stacking sequence optimization and aeroelastic tailoring of forward-swept composite wings is presented. It exploits bend-twist coupling to mitigate aeroelastic divergence. The method proposed here is intended for estimating potential weight savings during the preliminary aircraft design stages. A structural beam model of the composite wingbox is derived from anisotropic shell theory and the governing aeroelastic equations are presented for a spanwise discretized forward swept wing. Optimization of the system to reduce wing mass is undertaken for sweep angles of −35° to 0° and Mach numbers from 0.7 to 0.9. A subset of lamination parameters (LPs) and the number of laminate plies in each pre-defined direction (restricted to {0°,±45°, 90°}) serve as design variables. A bi-level hybrid optimization approach is employed, making use of a genetic algorithm (GA) and a subsequent gradient-based optimizer. Constraints are implemented to match lift requirements and prevent aeroelastic divergence, excessive deformations, airfoil stalling and structural failure. A permutation GA is then used to match specific composite ply stacking sequences to the optimum design variables with a limited number of manufacturing constraints considered for demonstration purposes. The optimization results in positive bend-twist coupling and a reduced structural mass. Results are compared to an uncoupled reference wing with quasi-isotropic layups and with panel thickness alone the design variables. For a typical geometry and a forward sweep of −25° at Mach 0.7, a wingbox mass reduction of 13 % was achieved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700