用户名: 密码: 验证码:
Apoptosis, autophagy, necroptosis, and cancer metastasis
详细信息    查看全文
  • 作者:Zhenyi Su (1) (2)
    Zuozhang Yang (3) (4)
    Yongqing Xu (4)
    Yongbin Chen (5)
    Qiang Yu (6)

    1. Department of Biochemistry and Molecular Biology
    ; Medical School ; Southeast University ; Nanjing ; Jiangsu ; 210009 ; China
    2. Department of Cell Biology
    ; Harvard Medical School ; Boston ; MA ; 02115 ; USA
    3. Bone and Soft Tissue Tumors Research Center of Yunnan Province
    ; Department of Orthopaedics ; the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) ; Kunming ; Yunnan ; 650118 ; China
    4. Department of Orthopaedics
    ; Kunming General Hospital of Chengdu Military Command ; Kunming ; Yunnan ; 650118 ; China
    5. Key Laboratory of Animal Models and Human Disease Mechanisms
    ; Kunming Institute of Zoology ; Chinese Academy of Sciences ; Kunming ; Yunnan ; 650223 ; China
    6. Shanghai Institute of Materia Medica
    ; Chinese Academy of Sciences ; 555 Zuchongzhi Road ; Shanghai ; 201203 ; China
  • 关键词:Apoptosis ; Autophagy ; Necroptosis ; Metastasis
  • 刊名:Molecular Cancer
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:14
  • 期:1
  • 全文大小:570 KB
  • 参考文献:1. Talmadge, JE, Fidler, IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 70: pp. 5649-69
    2. Horak, CE, Bronder, JL, Bouadis, A, Steeg, PS (2007) Metastasis-The Evasion of Apoptosis. Apoptosis, Cell Signaling, and Human Diseases: Molecular Mechanisms. 1: pp. 63-96
    3. Chaffer, CL, Weinberg, RA (2011) A perspective on cancer cell metastasis. Science 331: pp. 1559-64
    4. Luzzi, KJ, MacDonald, IC, Schmidt, EE, Kerkvliet, N, Morris, VL, Chambers, AF (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153: pp. 865-73
    5. Nagasaka, A, Kawane, K, Yoshida, H, Nagata, S (2010) Apaf-1-independent programmed cell death in mouse development. Cell Death Differ 17: pp. 931-41
    6. Burgess, DJ (2013) Apoptosis: Refined and lethal. Nat Rev Canc 13: pp. 79-9
    7. Verbrugge, I, Johnstone, RW, Smyth, MJ (2010) SnapShot: extrinsic apoptosis pathways. Cell 143: pp. 1192-2
    8. Z枚rnig, M, Hueber, A-O, Baum, W, Evan, G (2001) Apoptosis regulators and their role in tumorigenesis. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 1551: pp. F1-37
    9. Wong, R (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30: pp. 87
    10. Bai, L, Wang, S (2014) Targeting apoptosis pathways for new cancer therapeutics. Annu Rev Med 65: pp. 139-55
    11. Kim Y, Koo K, Sung J, Yun U, Kim H. Anoikis resistance: an essential prerequisite for tumor metastasis. International Journal of Cell Biology.2012; 2012. doi:10.1155/2012/306879
    12. Simpson, CD, Anyiwe, K, Schimmer, AD (2008) Anoikis resistance and tumor metastasis. Cancer Lett 272: pp. 177-85
    13. Douma, S, Laar, T, Zevenhoven, J, Meuwissen, R, Garderen, E, Peeper, DS (2004) Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430: pp. 1034-9
    14. Fofaria, NM, Srivastava, SK (2015) STAT3 induces anoikis resistance, promotes cell invasion and metastatic potential in pancreatic cancer cells. Carcinogenesis 36: pp. 142-50
    15. Eccles, SA, Welch, DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369: pp. 1742-57
    16. Townson, JL, Naumov, GN, Chambers, AF (2003) The role of apoptosis in tumor progression and metastasis. Curr Mol Med 3: pp. 631-42
    17. Azab, F, Puente, P, Vij, R, Azab, AK (2013) Tumor Hypoxia Promotes Dissemination and Tumor Colonization In Waldenstr枚m Macroglobulinemia. Blood 122: pp. 3011-1
    18. Hedley, BD, Chambers, AF (2009) Tumor dormancy and metastasis. Adv Canc Res 102: pp. 67-101
    19. Holmgren, L, O'Reilly, MS, Folkman, J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1: pp. 149-53
    20. Naumov, GN, MacDonald, IC, Chambers, AF, Groom, AC (2001) Solitary cancer cells as a possible source of tumour dormancy? Seminars in Cancer Biology.
    21. Folkman, J (2009) Dormancy. Encyclopedia of Cancer.
    22. Teitz, T, Inoue, M, Valentine, MB, Zhu, K, Rehg, JE, Zhao, W (2013) Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Res 73: pp. 4086-97
    23. Shin, MS, Kim, HS, Lee, SH, Lee, JW, Song, YH, Kim, YS (2002) Alterations of Fas-pathway genes associated with nodal metastasis in non-small cell lung cancer. Oncogene 21: pp. 4129-36
    24. Koom盲gi, R, Volm, M (1999) Relationship between the expression of caspase-3 and the clinical outcome of patients with non-small cell lung cancer. Anticancer Res 20: pp. 493-6
    25. Isobe, N, Onodera, H, Mori, A, Shimada, Y, Yang, W, Yasuda, S (2004) Caspase-3 expression in human gastric carcinoma and its clinical significance. Oncology 66: pp. 201-9
    26. Berezovskaya, O, Schimmer, AD, Glinskii, AB, Pinilla, C, Hoffman, RM, Reed, JC (2005) Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells. Cancer Res 65: pp. 2378-86
    27. Mehrotra, S, Languino, LR, Raskett, CM, Mercurio, AM, Dohi, T, Altieri, DC (2010) IAP regulation of metastasis. Cancer Cell 17: pp. 53-64
    28. Chen, H-Y, Lee, Y-R, Chen, R-H (2014) The functions and regulations of DAPK in cancer metastasis. Apoptosis 19: pp. 364-70
    29. Umetani, N, Fujimoto, A, Takeuchi, H, Shinozaki, M, Bilchik, AJ, Hoon, DS (2004) Allelic imbalance of APAF-1 locus at 12q23 is related to progression of colorectal carcinoma. Oncogene 23: pp. 8292-300
    30. Pinkas, J, Martin, SS, Leder, P (2004) Bcl-2-mediated cell survival promotes metastasis of EpH4 尾MEKDD mammary epithelial cells. Mol Canc Res 2: pp. 551-6
    31. Sun, T, Sun, B, Zhao, X, Zhao, N, Dong, X, Che, N (2011) Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl鈥? and Twist1: A study of hepatocellular carcinoma. Hepatology 54: pp. 1690-706
    32. Martin, SS, Ridgeway, AG, Pinkas, J, Lu, Y, Reginato, MJ, Koh, EY (2004) A cytoskeleton-based functional genetic screen identifies Bcl-xL as an enhancer of metastasis, but not primary tumor growth. Oncogene 23: pp. 4641-5
    33. Jansson, A, Sun, X-F (2002) Bax expression decreases significantly from primary tumor to metastasis in colorectal cancer. J Clin Oncol 20: pp. 811-6
    34. Lee, G, Yan, C, Shin, S, Hong, S, Ahn, T, Moon, A (2010) BAX inhibitor-1 enhances cancer metastasis by altering glucose metabolism and activating the sodium-hydrogen exchanger: the alteration of mitochondrial function. Oncogene 29: pp. 2130-41
    35. Stark, AM, Schem, C, Maass, N, Hugo, H, Jonat, W, Mehdorn, HM (2010) Expression of metastasis suppressor gene maspin is reduced in breast cancer brain metastases and correlates with the estrogen receptor status. Neurol Res 32: pp. 303-8
    36. Yuan, K, Xie, K, Fox, J, Zeng, H, Gao, H, Huang, C (2013) Decreased levels of miR-224 and the passenger strand of miR-221 increase MBD2, suppressing maspin and promoting colorectal tumor growth and metastasis in mice. Gastroenterology 145: pp. 853-64
    37. Pattje, W, Melchers, L, Slagter鈥怣enkema, L, Mastik, M, Schrijvers, M, Gibcus, J (2013) FADD expression is associated with regional and distant metastasis in squamous cell carcinoma of the head and neck. Histopathology 63: pp. 263-70
    38. Owen-Schaub, LB, Golen, KL, Hill, LL, Price, JE (1998) Fas and Fas ligand interactions suppress melanoma lung metastasis. J Exp Med 188: pp. 1717-23
    39. Huang, G, Nishimoto, K, Zhou, Z, Hughes, D, Kleinerman, ES (2012) miR-20a encoded by the miR-17鈥?2 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression. Cancer Res 72: pp. 908-16
    40. Wu, Y, Han, B, Sheng, H, Lin, M, Moore, PA, Zhang, J (2003) Clinical significance of detecting elevated serum DcR3/TR6/M68 in malignant tumor patients. Int J Canc 105: pp. 724-32
    41. Takeda, K, Hayakawa, Y, Smyth, MJ, Kayagaki, N, Yamaguchi, N, Kakuta, S (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7: pp. 94-100
    42. Gonzalvez, F, Ashkenazi, A (2010) New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29: pp. 4752-65
    43. Grosse-Wilde, A, Voloshanenko, O, Bailey, SL, Longton, GM, Schaefer, U, Csernok, AI (2008) TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development. J Clin Invest 118: pp. 100-10
    44. Powell, E, Piwnica-Worms, D, Piwnica-Worms, H (2014) Contribution of p53 to metastasis. Cancer Discov 4: pp. 405-14
    45. H眉bner, A, Mulholland, DJ, Standen, CL, Karasarides, M, Cavanagh-Kyros, J, Barrett, T (2012) JNK and PTEN cooperatively control the development of invasive adenocarcinoma of the prostate. Proc Natl Acad Sci 109: pp. 12046-51
    46. Pallavi, S, Ho, DM, Hicks, C, Miele, L, Artavanis鈥怲sakonas, S (2012) Notch and Mef2 synergize to promote proliferation and metastasis through JNK signal activation in Drosophila. EMBO J 31: pp. 2895-907
    47. Kalea, AZ, See, F, Harja, E, Arriero, M, Schmidt, AM, Hudson, BI (2010) Alternatively spliced RAGEv1 inhibits tumorigenesis through suppression of JNK signaling. Cancer Res 70: pp. 5628-38
    48. Bharti, AC, Aggarwal, BB (2002) Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol 64: pp. 883-8
    49. Liu, X, Xiang, L, Zhang, Y, Becker, KG, Bera, TK, Pastan, I (2012) CAPC negatively regulates NF-魏B activation and suppresses tumor growth and metastasis. Oncogene 31: pp. 1673-82
    50. Bollrath, J, Greten, FR (2009) IKK/NF鈥愇築 and STAT3 pathways: central signalling hubs in inflammation鈥恗ediated tumour promotion and metastasis. EMBO Rep 10: pp. 1314-9
    51. Vousden, KH, Lu, X (2002) Live or let die: the cell's response to p53. Nat Rev Canc 2: pp. 594-604
    52. Schwitalla, S, Ziegler, PK, Horst, D, Becker, V, Kerle, I, Begus-Nahrmann, Y (2013) Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell 23: pp. 93-106
    53. Melino, G (2011) p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ 18: pp. 1487-99
    54. Adorno, M, Cordenonsi, M, Montagner, M, Dupont, S, Wong, C, Hann, B (2009) A Mutant-p53/Smad complex opposes p63 to empower TGF尾-induced metastasis. Cell 137: pp. 87-98
    55. Heldin, C-H, Landstr枚m, M, Moustakas, A (2009) Mechanism of TGF-尾 signaling to growth arrest, apoptosis, and epithelial鈥搈esenchymal transition. Curr Opin Cell Biol 21: pp. 166-76
    56. Tachibana, I, Imoto, M, Adjei, PN, Gores, GJ, Subramaniam, M, Spelsberg, TC (1997) Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest 99: pp. 2365
    57. Jang, C-W, Chen, C-H, Chen, C-C, Chen, J-y, Su, Y-H, Chen, R-H (2001) TGF-尾 induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 4: pp. 51-8
    58. Valderrama-Carvajal, H, Cocolakis, E, Lacerte, A, Lee, E-H, Krystal, G, Ali, S (2002) Activin/TGF-尾 induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat Cell Biol 4: pp. 963-9
    59. Gottfried, Y, Rotem, A, Lotan, R, Steller, H, Larisch, S (2004) The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO J 23: pp. 1627-35
    60. Perlman, R, Schiemann, WP, Brooks, MW, Lodish, HF, Weinberg, RA (2001) TGF-尾-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 3: pp. 708-14
    61. Drabsch, Y, Dijke, P (2012) TGF-尾 signalling and its role in cancer progression and metastasis. Canc Metastasis Rev 31: pp. 553-68
    62. Kessenbrock, K, Plaks, V, Werb, Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141: pp. 52-67
    63. Mitsiades, N, W-h, Y, Poulaki, V, Tsokos, M, Stamenkovic, I (2001) Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Canc Res 61: pp. 577-81
    64. Liu, H, Zhang, T, Li, X, Huang, J, Wu, B, Huang, X (2008) Predictive value of MMP鈥? expression for response to chemotherapy and survival in patients with non鈥恠mall cell lung cancer. Cancer Science 99: pp. 2185-92
    65. Joo, NE, Miao, D, Berm煤dez, M, Stallcup, WB, Kapila, YL (2014) Shedding of NG2 by MMP-13 Attenuates Anoikis. DNA and Cell Biology 33: pp. 854-62
    66. Jing, L, Anning, L (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15: pp. 36-42
    67. Dhanasekaran, DN, Reddy, EP (2008) JNK signaling in apoptosis. Oncogene 27: pp. 6245-51
    68. Calon, A, Espinet, E, Palomo-Ponce, S, Tauriello, DV, Iglesias, M, C茅spedes, MV (2012) Dependency of colorectal cancer on a TGF-尾-driven program in stromal cells for metastasis initiation. Cancer Cell 22: pp. 571-84
    69. Boya, P, Reggiori, F, Codogno, P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15: pp. 713-20
    70. Mizushima, N, Yoshimori, T, Ohsumi, Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27: pp. 107-32
    71. Choi, AM, Ryter, SW, Levine, B (2013) Autophagy in human health and disease. N Engl J Med 368: pp. 651-62
    72. Tong, XP, Chen, Y, Zhang, SY, Xie, T, Tian, M, Guo, MR (2015) Key autophagic targets and relevant small鈥恗olecule compounds in cancer therapy. Cell Prolif 48: pp. 7-16
    73. Kenific, CM, Thorburn, A, Debnath, J (2010) Autophagy and metastasis: another double-edged sword. Curr Opin Cell Biol 22: pp. 241-5
    74. DeNardo, DG, Johansson, M, Coussens, LM (2008) Immune cells as mediators of solid tumor metastasis. Canc Metastasis Rev 27: pp. 11-8
    75. Quail, DF, Joyce, JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19: pp. 1423-37
    76. Degenhardt, K, Mathew, R, Beaudoin, B, Bray, K, Anderson, D, Chen, G (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10: pp. 51-64
    77. Thorburn, J, Horita, H, Redzic, J, Hansen, K, Frankel, AE, Thorburn, A (2009) Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ 16: pp. 175-83
    78. Thorburn, J, Frankel, AE, Thorburn, A (2009) Regulation of HMGB1 release by autophagy. Autophagy 5: pp. 247-9
    79. Apetoh, L, Ghiringhelli, F, Tesniere, A, Obeid, M, Ortiz, C, Criollo, A (2007) Toll-like receptor 4鈥揹ependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13: pp. 1050-9
    80. Yang, H, Hreggvidsdottir, HS, Palmblad, K, Wang, H, Ochani, M, Li, J (2010) A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci 107: pp. 11942-7
    81. Yan, J, Wang, ZY, Yang, HZ, Liu, HZ, Mi, S, Lv, XX (2011) Timing is critical for an effective anti-metastatic immunotherapy: the decisive role of IFN纬/STAT1-mediated activation of autophagy. PloS One 6: pp. e24705
    82. Liu, H, He, Z, R眉tte, T, Yousefi, S, Hunger, RE, Simon, H-U (2013) Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med 5: pp. 202ra123-3
    83. Morgan, TM, Koreckij, TD, Corey, E (2009) Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets 9: pp. 237
    84. Schmitz, M, Grignard, G, Margue, C, Dippel, W, Capesius, C, Mossong, J (2007) Complete loss of PTEN expression as a possible early prognostic marker for prostate cancer metastasis. Int J Cancer 120: pp. 1284-92
    85. Lakshman, M, Xu, L, Ananthanarayanan, V, Cooper, J, Takimoto, CH, Helenowski, I (2008) Dietary genistein inhibits metastasis of human prostate cancer in mice. Canc Res 68: pp. 2024-32
    86. Singh, BN, Kumar, D, Shankar, S, Srivastava, RK (2012) Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochem Pharmacol 84: pp. 1154-63
    87. Saiki, S, Sasazawa, Y, Imamichi, Y, Kawajiri, S, Fujimaki, T, Tanida, I (2011) Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy 7: pp. 176
    88. Shen, H-M, Codogno, P (2011) Autophagic cell death. Autophagy 7: pp. 457-65
    89. Clarke, P, Puyal, J (2012) Autophagic cell death exists. Autophagy 8: pp. 867-9
    90. Nezis, IP, Shravage, BV, Sagona, AP, Lamark, T, Bj酶rk酶y, G, Johansen, T (2010) Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J Cell Biol 190: pp. 523-31
    91. Young, MM, Takahashi, Y, Khan, O, Park, S, Hori, T, Yun, J (2012) Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem 287: pp. 12455-68
    92. Mari帽o, G, Niso-Santano, M, Baehrecke, EH, Kroemer, G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15: pp. 81-94
    93. Hashimoto, I, Koizumi, K, Tatematsu, M, Minami, T, Cho, S, Takeno, N (2008) Blocking on the CXCR4/mTOR signalling pathway induces the anti-metastatic properties and autophagic cell death in peritoneal disseminated gastric cancer cells. Eur J Canc 44: pp. 1022-9
    94. Nguyen, DX, Bos, PD, Massagu茅, J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Canc 9: pp. 274-84
    95. Vanharanta, S, Massagu茅, J (2013) Origins of Metastatic Traits. Cancer Cell 24: pp. 410-21
    96. Guadamillas, MC, Cerezo, A, Pozo, MA (2011) Overcoming anoikis鈥損athways to anchorage-independent growth in cancer. J Cell Sci 124: pp. 3189-97
    97. Lock, R, Debnath, J (2008) Extracellular matrix regulation of autophagy. Curr Opin Cell Biol 20: pp. 583-8
    98. Debnath, J (2008) Detachment-induced autophagy during anoikis and lumen formation in epithelial acini. Autophagy 4: pp. 351-3
    99. Peng, Y-F, Shi, Y-H, Ding, Z-B, Ke, A-W, Gu, C-Y, Hui, B (2013) Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy. 9: pp. 2056-68
    100. Fung, C, Lock, R, Gao, S, Salas, E, Debnath, J (2008) Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell 19: pp. 797-806
    101. Rao, S, Tortola, L, Perlot, T, Wirnsberger, G, Novatchkova, M, Nitsch, R (2013) A dual role for autophagy in a murine model of lung cancer. Nat Commun. 5: pp. 3056-6
    102. Guo, JY, Karsli-Uzunbas, G, Mathew, R, Aisner, SC, Kamphorst, JJ, Strohecker, AM (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Gene Dev 27: pp. 1447-61
    103. Toshima, T, Shirabe, K, Matsumoto, Y, Yoshiya, S, Ikegami, T, Yoshizumi, T (2013) Autophagy enhances hepatocellular carcinoma progression by activation of mitochondrial 尾-oxidation. J Gastroenterol. 49: pp. 1-10
    104. Sosa, MS, Bragado, P, Aguirre-Ghiso, JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 14: pp. 611-22
    105. Lu, Z, Luo, RZ, Lu, Y, Zhang, X, Yu, Q, Khare, S (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 118: pp. 3917
    106. Ojha, R, Bhattacharyya, S, Singh, SK (2015) Autophagy in Cancer Stem Cells: A Potential Link Between Chemoresistance, Recurrence, and Metastasis. BioResearch Open Access 4: pp. 97-108
    107. Bellodi, C, Lidonnici, MR, Hamilton, A, Helgason, GV, Soliera, AR, Ronchetti, M (2009) Targeting autophagy potentiates tyrosine kinase inhibitor鈥搃nduced cell death in Philadelphia chromosome鈥損ositive cells, including primary CML stem cells. J Clin Invest 119: pp. 1109-23
    108. Gong, C, Bauvy, C, Tonelli, G, Yue, W, Delomenie, C, Nicolas, V (2012) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32: pp. 2261-72
    109. Zhu, H, Wang, D, Liu, Y, Su, Z, Zhang, L, Chen, F (2013) Role of the Hypoxia-inducible factor-1 alpha induced autophagy in the conversion of non-stem pancreatic cancer cells into CD133+ pancreatic cancer stem-like cells. Cancer Cell Int 13: pp. 119
    110. Chan, FK-M (2013) Programmed Necrosis/Necroptosis: An Inflammatory Form of Cell Death.
    111. Lu, J, Chen, H, Walsh, C (2014) Necroptotic signaling in adaptive and innate immunity. Semin Cell Dev Biol. 35: pp. 33-9
    112. Ch鈥檈n, IL, Tsau, JS, Molkentin, JD, Komatsu, M, Hedrick, SM (2011) Mechanisms of necroptosis in T cells. J Exp Med 208: pp. 633-41
    113. Dempsey, LA (2013) Interferon-induced necroptosis. Nat Immunol 14: pp. 892-2
    114. He, S, Liang, Y, Shao, F, Wang, X (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3鈥搈ediated pathway. Proc Natl Acad Sci 108: pp. 20054-9
    115. Degterev, A, Huang, Z, Boyce, M, Li, Y, Jagtap, P, Mizushima, N (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1: pp. 112-9
    116. Dynek, JN, Goncharov, T, Dueber, EC, Fedorova, AV, Izrael鈥怲omasevic, A, Phu, L (2010) c鈥怚AP1 and UbcH5 promote K11鈥恖inked polyubiquitination of RIP1 in TNF signalling. EMBO J 29: pp. 4198-209
    117. Ofengeim, D, Yuan, J (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14: pp. 727-36
    118. O鈥橠onnell, MA, Perez-Jimenez, E, Oberst, A, Ng, A, Massoumi, R, Xavier, R (2011) Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol 13: pp. 1437-42
    119. Lin, Y, Devin, A, Rodriguez, Y, Liu, Z-g (1999) Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Gene Dev 13: pp. 2514-26
    120. Feng, S, Yang, Y, Mei, Y, Ma, L, Zhu, D-e, Hoti, N (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cellular Signalling 19: pp. 2056-67
    121. Sun, L, Wang, H, Wang, Z, He, S, Chen, S, Liao, D (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148: pp. 213-27
    122. Cai, Z, Jitkaew, S, Zhao, J, Chiang, H-C, Choksi, S, Liu, J (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16: pp. 55-65
    123. Wang, Z, Jiang, H, Chen, S, Du, F, Wang, X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148: pp. 228-43
    124. Vandenabeele, P, Galluzzi, L, Berghe, TV, Kroemer, G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11: pp. 700-14
    125. Zhang, D-W, Shao, J, Lin, J, Zhang, N, Lu, B-J, Lin, S-C (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325: pp. 332-6
    126. Cho, Y, Challa, S, Moquin, D, Genga, R, Ray, TD, Guildford, M (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137: pp. 1112-23
    127. Fulda, S (2013) The mechanism of necroptosis in normal and cancer cells. Canc Biol Ther 14: pp. 999-1004
    128. Liu, P, Xu, B, Shen, W, Zhu, H, Wu, W, Fu, Y (2011) Dysregulation of TNF伪-induced necroptotic signaling in chronic lymphocytic leukemia: suppression of CYLD gene by LEF1. Leukemia 26: pp. 1293-300
    129. Cerhan, JR, Ansell, SM, Fredericksen, ZS, Kay, NE, Liebow, M, Call, TG (2007) Genetic variation in 1253 immune and inflammation genes and risk of non-Hodgkin lymphoma. Blood 110: pp. 4455-63
    130. Han, W, Li, L, Qiu, S, Lu, Q, Pan, Q, Gu, Y (2007) Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Canc Therapeut 6: pp. 1641-9
    131. Kawano, Y, Fujiwara, S, Kikukawa, Y, Okuno, Y, Mitsuya, H, Hata, H (2013) A Small Molecule, Shikonin, Dually Functions As a Proteasome Inhibitor and a Necroptosis Inducer In Multiple Myeloma Cells. Blood 122: pp. 3172-2
    132. Fu, Z, Deng, B, Liao, Y, Shan, L, Yin, F, Wang, Z (2013) The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis. BMC Cancer 13: pp. 580
    133. Xuan, Y, Hu, X (2009) Naturally-occurring shikonin analogues鈥揳 class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett 274: pp. 233-42
    134. Pasupuleti, N, Leon, L, Carraway, KL, Gorin, F (2013) 5-Benzylglycinyl-amiloride kills proliferating and nonproliferating malignant glioma cells through caspase-independent necroptosis mediated by apoptosis-inducing factor. J Pharmacol Exp Ther 344: pp. 600-15
    135. Basit, F, Cristofanon, S, Fulda, S (2013) Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ 20: pp. 1161-73
    136. Li, N, He, Y, Wang, L, Mo, C, Zhang, J, Zhang, W (2011) D鈥恎alactose induces necroptotic cell death in neuroblastoma cell lines. J Cell Biochem 112: pp. 3834-44
    137. Huang, H, Xiao, T, He, L, Ji, H, Liu, X-Y (2012) Interferon-尾-armed oncolytic adenovirus induces both apoptosis and necroptosis in cancer cells. Acta Biochim Biophys Sin 44: pp. 737-45
    138. Jouan-Lanhouet, S, Arshad, M, Piquet-Pellorce, C, Martin-Chouly, C, Moigne-Muller, G, Herreweghe, F (2012) TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 19: pp. 2003-14
    139. Buchheit, C, Rayavarapu, R, Schafer, Z (2012) The regulation of cancer cell death and metabolism by extracellular matrix attachment. Semin Cell Dev Biol. 23: pp. 402-11
    140. Long, J, Ryan, K (2012) New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy. Oncogene 31: pp. 5045-60
    141. Amaravadi, RK, Thompson, CB (2007) The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Canc Res 13: pp. 7271-9
    142. Carrasco-Garc铆a, E, Mart铆nez-Lacaci, I, Ferragut, JA, Mayor-L贸pez, L, Rocamora-Reverte, L, Men茅ndez-Guti茅rrez, MP (2012) Chapter 4. Cell death and cancer, novel therapeutic strategies. Apoptosis and Medicine, InTech.
    143. Hu, X, Han, W, Li, L (2007) Targeting the weak point of cancer by induction of necroptosis. Autophagy 3: pp. 490
    144. Hu, X, Xuan, Y (2008) Bypassing cancer drug resistance by activating multiple death pathways鈥揳 proposal from the study of circumventing cancer drug resistance by induction of necroptosis. Cancer Lett 259: pp. 127-37
    145. Weiner, LM, Lotze, MT (2012) Tumor-cell death, autophagy, and immunity. N Engl J Med 366: pp. 1156-8
    146. Lu, JV, Walsh, CM (2012) Programmed necrosis and autophagy in immune function. Immunol Rev 249: pp. 205-17
    147. Mattick, JS (2009) The genetic signatures of noncoding RNAs. PLoS Genet 5: pp. e1000459
    148. Lima, RT, Busacca, S, Almeida, GM, Gaudino, G, Fennell, DA, Vasconcelos, MH (2011) MicroRNA regulation of core apoptosis pathways in cancer. Eur J Canc 47: pp. 163-74
    149. Liu, B, Wen, X, Cheng, Y (2013) Survival or death: disequilibrating the oncogenic and tumor suppressive autophagy in cancer. Cell Death Dis 4: pp. e892
    150. Wang, KC, Chang, HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43: pp. 904-14
    151. Chen, G, Wang, Z, Wang, D, Qiu, C, Liu, M, Chen, X (2013) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41: pp. D983-6
    152. K-h, L, Li, W, Liu, X-h, Sun, M, Zhang, M-l, Wu, W-q (2013) Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer 13: pp. 461
    153. Shi X, Sun M, Liu H, Yao Y, Kong R, Chen F, et al. A critical role for the long non鈥恈oding RNA GAS5 in proliferation and apoptosis in non鈥恠mall鈥恈ell lung cancer. Mol Carcinog. 2013; doi:10.1002/mc.22120
    154. Zhao, Y, Guo, Q, Chen, J, Hu, J, Wang, S, Sun, Y (2014) Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncol Rep 31: pp. 358-64
  • 刊物主题:Cancer Research; Oncology;
  • 出版者:BioMed Central
  • ISSN:1476-4598
文摘
Metastasis is a crucial hallmark of cancer progression, which involves numerous factors including the degradation of the extracellular matrix (ECM), the epithelial-to-mesenchymal transition (EMT), tumor angiogenesis, the development of an inflammatory tumor microenvironment, and defects in programmed cell death. Programmed cell death, such as apoptosis, autophagy, and necroptosis, plays crucial roles in metastatic processes. Malignant tumor cells must overcome these various forms of cell death to metastasize. This review summarizes the recent advances in the understanding of the mechanisms by which key regulators of apoptosis, autophagy, and necroptosis participate in cancer metastasis and discusses the crosstalk between apoptosis, autophagy, and necroptosis involved in the regulation of cancer metastasis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700