用户名: 密码: 验证码:
Impact of updraft on neutralized charge rate by lightning in thunderstorms: A simulation case study
详细信息    查看全文
  • 作者:Fei Wang ; Yijun Zhang 张义军 ; Dong Zheng 郑 栋
  • 关键词:lightning activity ; updraft ; neutralized charge ; charging rate ; charge amount
  • 刊名:Journal of Meteorological Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:29
  • 期:6
  • 页码:997-1010
  • 全文大小:1,369 KB
  • 参考文献:Baker, M. B., A. M. Blyth, H. J. Christian, et al., 1999: Relationships between lightning activity and various thundercloud parameters: Satellite and modelling studies. Atmos. Res., 51, 221–236.CrossRef
    Barthe, C., and M. C. Barth, 2008: Evaluation of a new lightning-produced NOx parameterization for cloud resolving models and its associated uncertainties. Atmos. Chem. Phys., 8, 4691–4710.CrossRef
    Barthe, C., W. Deierling, and M. C. Barth, 2010: Estimation of total lightning from various storm parameters: A cloud-resolving model study. J. Geophys. Res., 115, doi: 10.1029/2010JD014405.
    Black, R. A., and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56, 2004–2028.CrossRef
    Boccippio, D. J., 2002: Lightning scaling relations revisited. J. Atmos. Sci., 59, 1086–1104.CrossRef
    Bruning, E. C., and D. R. MacGorman, 2013: Theory and observations of controls on lightning flash size spectra. J. Atmos. Sci., 70, 4012–4029.CrossRef
    Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 33–64.CrossRef
    Carey, L. D., M. J. Murphy, T. L. McCormick, et al., 2005: Lightning location relative to storm structure in a leading-line trailing-stratiform mesoscale convective system. J. Gophys. Res., 110, D03105, doi: 10.1029/2003JD004371.CrossRef
    Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi: 10.1029/2007JD009598.CrossRef
    Dye, J. E., J. J. Jones, A. J. Weinheimer, et al., 1988: Observations within two regions of charge during initial thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 114, 1271–1290.CrossRef
    Fuchs, B., S. Rutledge, T. Lang, et al., 2014: Factors affecting lightning behavior in various regions of the United States. 5th International Lightning Meteorological Conference. 20–21 March, Tucson, Arizona, USA.
    Gardiner, B., D. Lamb, R. L. Pitter, et al., 1985: Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm. J. Geophys. Res., 90, 6079–6086.CrossRef
    Hallett, J., and C. P. R. Saunders, 1979: Charge separation associated with secondary ice crystal production. J. Atmos. Sci., 36, 2230–2235.CrossRef
    Heymsfield, G. M., L. Tian, A. J. Heymsfield, et al., 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285–308.CrossRef
    Hu Zhijin and He Guanfang, 1988: Numerical simulation of microphysical processes in cumulonimbus—Part I: Microphysical model. Acta Meteor. Sinica, 2, 471–489. (in Chinese)
    Jacobson, E. A., and E. P. Krider, 1976: Electrostatic field changes produced by Florida lightning. J. Atmos. Sci., 33, 103–117.CrossRef
    Kasemir, H. W., 1960: A contribution to the electrostatic theory of a lightning discharge. J. Geophys. Res., 65, 1873–1878.CrossRef
    Kasemir, H. W., 2012: Theoretical and Experimental Determination of Field, Charge and Current on an Aircraft hit by Natural or Triggered Lightning. American Geophysical Union Washington, D.C., 885–693.
    Kuhlman, K. M., D. R. MacGorman, M. I. Biggerstaff, et al., 2009: Lightning initiation in the anvils of two supercell storms. Geophys. Res. Lett., 36, L07802, doi: 10.1029/2008GL036650.CrossRef
    Lang, T. J., and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 2492–2506.CrossRef
    Liu, C. T., and E. J. Zipser, 2008: Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations. Geophys. Res. Lett., 35, L04819, doi: 10.1029/2007GL032437.
    Marshall, T. C., M. P. McCarthy, and W. D. Rust, 1995: Electric field magnitudes and lightning initiation in thunderstorms. J. Geophys. Res., 100, 7097–7103.CrossRef
    Mansell, E. R., D. R. MacGorman, C. L. Ziegler, et al., 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophy. Res., 107, ACL2-1-ACL2-12, doi: 10.1029/2000JD000244.
    McCaul, E. W. Jr., S. J. Goodman, K. M. LaCasse, et al., 2009: Forecasting lightning threat using cloudresolving model simulations. Wea. Forecasting, 24, 709–729.CrossRef
    Mecikalski, R. M., A. L. Bain, and L. D. Carey, 2015: Radar and lightning observations of deep moist convection across northern Alabama during DC3: 21 May 2012. Mon. Wea. Rev., 143, 2774–2794.CrossRef
    Miller, K., A. Gadian, C. Saunders, et al., 2001: Modelling and observations of thundercloud electrification and lightning. Atmos. Res., 58, 89–115.CrossRef
    Palucki, J. L., M. I. Biggerstaff, D. R. MacGorman, et al., 2011: Comparison between low-flash and non-lightning-producing convective areas within a mature mesoscale convective system. Wea. Forecasting, 26, 468–486.CrossRef
    Pereyra, R. G., E. E. Avila, N. E. Catellano, et al., 2000: A laboratory study of graupel charging. J. Geophys. Res., 105, 20803–20812.CrossRef
    Petersen, W. A., S. A. Rutledge, and R. W. Orville, 1996: Cloud-to-ground lightning observations to TOGA COARE: Selected results and lightning location algorithm. Mon. Wea. Rev., 124, 602–620.CrossRef
    Petersen, W. A., S. A. Rutledge, R. C. Cifelli, et al., 1999: Shipborne Dual-Doppler operations during TOGA COARE: Integrated observations of storm kinematics and electrification. Bull. Amer. Meteor. Soc., 80, 81–97.CrossRef
    Pickering, K. E., Y. S. Wang, W.-K. Tao, et al., 1998: Vertical distributions of lightning NOx for use in regional and global chemical transport models. J. Geophys. Res., 103, 31203–31216.CrossRef
    Price, C., and D. Rind, 1992: A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res., 97, 9919–9933.CrossRef
    Reinhart, B., H. Fuelberg, R. Blakeslee, et al., 2014: Understanding the relationships between lightning, cloud microphysics, and airborne radar-derived storm structure during Hurricane Karl (2010). Mon. Wea. Rev., 142, 590–605.CrossRef
    Rutledge, S. A., E. R. Williams, and T. D. Keenan, 1992: The down upper Doppler and electricity experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73, 3–16.CrossRef
    Shackford, C. R., 1960: Radar indications of a precipitation-lightning relationship in New England thunderstorms. J. Meteor., 17, 15–19.CrossRef
    Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548.CrossRef
    Takahashi, T., 1984: Thunderstorm electrification—A numerical study. J. Atmos. Sci., 41, 2541–2558.CrossRef
    Tan Yongbo, Tao Shanchang, Zhu Baoyou, et al., 2006: The simulation of double-layer and branchingstructure of lightning in thunderstorm. Sci. China (Ser. D.), 36, 486–496. (in Chinese)
    Tan Yongbo, Tao Shanchang, Zhu Baoyou, et al., 2007: A simulation of the effects of intra-cloud lightning discharges on the charges and electrostatic potential distributions in a thundercloud. Chinese J. Geophys., 50, 1053–1065. (in Chinese)
    Tessendorf, S. A., L. J. Miller, K. C. Wiens, et al., 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 4127–4150.CrossRef
    Wang Fang, Xiao Wenan, Lei Hengchi, et al., 2009: Numerical simulation of electricity characteristic of a thunderstorm case in summer of Jilin. Plateau Meteor., 28, 385–394. (in Chinese)
    Wang Fei, Zhang Yijun, Zheng Dong, et al., 2015: Impact of the vertical velocity field on charging processes and charge separation in a simulated thunderstorm. J. Meteor. Res., 29, 328–343.CrossRef
    Weiss, S. A., D. R. MacGorman, and K. M. Calhoun, 2012: Lightning in the anvils of supercell thunderstorms. Mon. Wea. Rev., 140, 2064–2079.CrossRef
    Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 4151–4177.CrossRef
    Williams, E. R., and R. M. Lhermitte, 1983: Radar tests of the precipitation hypothesis for thunderstorm electrification. J. Geophys. Res., 88, 10984–10992.CrossRef
    Williams, E. R., 1985: Large-scale charge separation in thunderclouds. J. Geophys. Res., 90, 6013–6025.CrossRef
    Williams, E. R., and S. Stanfill, 2002: The physical origin of the land-ocean contrast in lightning activity. Comp. Rend. Phys., 3, 1277–1292.CrossRef
    Williams, E. R., V. Mushtak, D. Rosenfeld, et al., 2005: Thermodynamic conditions favorable to superlative thunderstorm updrafts, mixed phase microphysics and lightning flash rate. Atmos. Res., 76, 288–306.CrossRef
    Workman, E. J., and S. E. Reynolds, 1949: Electrical activity as related to thunderstorm cell growth. Bull. Amer. Meteor. Soc., 30, 142–149.
    Yao Wen, Zhang Yijun, Meng Qing, et al., 2013: A comparison of the characteristics of total and cloud-toground lightning activities in hailstorms. J. Meteor. Res., 27, 282–293, doi: 10.1007/s13351-013-0212-x.
    Zhang Wenjuan, Zhang Yijun, and Zhou Xiuji, 2013: Lightning activity and precipitation characteristics of Typhoon Molave (2009) around its landfall. J. Meteor. Res., 27, 742–757, doi: 10.1007/s13351-013-0510-3.
    Zhang Yijun, Yan Muhong, and Liu Xinsheng, 1999: Simulation study of discharge processes in thunderstorm. Chin. Sci. Bull., 44, 2098–2102. (in Chinese)CrossRef
    Zhang Yijun, P. R. Krehbiel, Liu Xinsheng, et al., 2003: Three dimensions structure of lightning discharge channel. Plateau Meteor., 22, 217–220. (in Chinese)
    Zheng Dong, Zhang Yijun, Meng Qing, et al., 2010: Relationship between lightning activities and surface precipitation in thunderstorm weather in Beijing. J. Appl. Meteor. Sci., 21, 287–297.
    Ziegler, C. L., D. R. MacGorman, J. E. Dye, et al., 1991: A model evaluation of noninductive graupelice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96, 12833–12855.CrossRef
    Ziegler, C. L., and D. R. MacGorman, 1994: Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm. J. Atmos. Sci., 51, 833–851.CrossRef
  • 作者单位:Fei Wang (1) (2)
    Yijun Zhang 张义军 (1) (2)
    Dong Zheng 郑 栋 (1) (2)

    1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences (CAMS), Beijing, 100081, China
    2. Laboratory of Lightning Physics and Protection Engineering, CAMS, Beijing, 100081, China
  • 刊物类别:Atmospheric Sciences; Meteorology; Geophysics and Environmental Physics; Atmospheric Protection/Air
  • 刊物主题:Atmospheric Sciences; Meteorology; Geophysics and Environmental Physics; Atmospheric Protection/Air Quality Control/Air Pollution;
  • 出版者:The Chinese Meteorological Society
  • ISSN:2198-0934
文摘
The rate of neutralized charge by lightning (RNCL) is an important parameter indicating the intensity of lightning activity. The total charging rate (CR), the CR of one kind of polarity (e.g., negative) charge (CROP), and the outflow rate of charge on precipitation (ORCP) are proposed as key factors impacting RNCL, based on the principle of conservation of one kind of polarity charge in a thunderstorm. In this paper, the impacts of updraft on CR and CROP are analyzed by using a 3D cloud resolution model for a strong storm that occurred in Beijing on 6 september 2008. The results show that updraft both promotes and inhibits RNCL at the same time. (1) Updraft always has a positive influence on CR. The correlation coefficient between the updraft volume and CR can reach 0.96. Strengthening of the updraft facilitates strengthening of RNCL through this positive influence. (2) Strengthening of the updraft also promotes reinforcement of CROP. The correlation coefficient between the updraft volume and CROP is high (about 0.9), but this promotion restrains the strengthening of RNCL because the strengthening of CROP will, most of the time, inhibit the increasing of RNCL. (3) Additionally, increasing of ORCP depresses the strengthening of RNCL. In terms of magnitude, the peak of ORCP is equal to the peak of CR. Because precipitation mainly appears after the lightning activity finishes, the depression effect of ORCP on RNCL can be ignored during the active lightning period. Keywords lightning activity updraft neutralized charge charging rate charge amount

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700