用户名: 密码: 验证码:
Effect of hard segment architecture on shape memory properties of polycaprolactone-based polyurethane containing azobenzene
详细信息    查看全文
  • 作者:Xiwen Wu ; Libin Liu ; Wenyuan Fang ; Congde Qiao ; Tianduo Li
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:51
  • 期:5
  • 页码:2727-2738
  • 全文大小:3,187 KB
  • 参考文献:1.Habault D, Zhang H, Zhao Y (2013) Light-triggered self-healing and shape-memory polymers. Chem Soc Rev 42:7244–7256. doi:10.​1039/​c3cs35489j CrossRef
    2.Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057. doi:10.​1002/​1521-3773(20020617)41:​12<2034:​AID-ANIE2034>3.​0.​CO;2-M CrossRef
    3.Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558. doi:10.​1039/​B615954K CrossRef
    4.Wang Z, Zhao J, Chen M et al (2014) Dually actuated triple shape memory polymers of cross-linked polycyclooctene–carbon nanotube/polyethylene nanocomposites. ACS Appl Mater Interfaces 6:20051–20059. doi:10.​1021/​am5056307 CrossRef
    5.Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A Appl Sci Manuf 40:1661–1672. doi:10.​1016/​j.​compositesa.​2009.​08.​011 CrossRef
    6.Bonanno LM, DeLouise LA (2010) Integration of a chemical-responsive hydrogel into a porous silicon photonic sensor for visual colorimetric readout. Adv Funct Mater 20:573–578. doi:10.​1002/​adfm.​200901694 CrossRef
    7.Yu C, Duan Z, Yuan P et al (2013) Electronically programmable, reversible shape change in two- and three-dimensional hydrogel structures. Adv Mater 25:1541–1546. doi:10.​1002/​adma.​201204180 CrossRef
    8.Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676. doi:10.​1126/​science.​1066102 CrossRef
    9.Zheng X, Zhou S, Li X, Weng J (2006) Shape memory properties of poly(d, l-lactide)/hydroxyapatite composites. Biomaterials 27:4288–4295. doi:10.​1016/​j.​biomaterials.​2006.​03.​043 CrossRef
    10.Shi Y, Yoonessi M, Weiss RA (2013) High temperature shape memory polymers. Macromolecules 46:4160–4167. doi:10.​1021/​ma302670p CrossRef
    11.Ahn S-K, Kasi RM (2011) Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv Funct Mater 21:4543–4549. doi:10.​1002/​adfm.​201101369 CrossRef
    12.Cuevas JM, Rubio R, German L et al (2012) Triple-shape memory effect of covalently crosslinked polyalkenamer based semicrystalline polymer blends. Soft Matter 8:4928–4935. doi:10.​1039/​C2SM07481H CrossRef
    13.Bothe M, Mya KY, Jie Lin EM et al (2012) Triple-shape properties of star-shaped POSS-polycaprolactone polyurethane networks. Soft Matter 8:965–972. doi:10.​1039/​C1SM06474F CrossRef
    14.Jang MK, Hartwig A, Kim BK (2009) Shape memory polyurethanes cross-linked by surface modified silica particles. J Mater Chem 19:1166–1172. doi:10.​1039/​B816691A CrossRef
    15.Alteheld A, Feng Y, Kelch S, Lendlein A (2005) Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. Angew Chem Int Ed 44:1188–1192. doi:10.​1002/​anie.​200461360 CrossRef
    16.Lendlein A, Zotzmann J, Feng Y, Alteheld A, Kelch S (2009) Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(rac-lactide)urethane networks by incorporation of different comonomers. Biomacromolecules 10:975–982. doi:10.​1021/​bm900038e CrossRef
    17.Sun H, Mei L, Song C, Cui X, Wang P (2006) The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 27:1735–1740. doi:10.​1016/​j.​biomaterials.​2005.​09.​019 CrossRef
    18.Momtaz M, Razavi-Nouri M, Barikani M (2014) Effect of block ratio and strain amplitude on thermal, structural, and shape memory properties of segmented polycaprolactone-based polyurethanes. J Mater Sci 49:7575–7584. doi:10.​1007/​s10853-014-8466-y CrossRef
    19.Behl M, Ridder U, Feng Y, Kelch S, Lendlein A (2009) Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components. Soft Matter 5:676–684. doi:10.​1039/​B810583A CrossRef
    20.Lee BS, Chun BC, Chung Y-C, Sul KI, Cho JW (2001) Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34:6431–6437. doi:10.​1021/​ma001842l CrossRef
    21.Wang S, Lu L, Gruetzmacher JA, Currier BL, Yaszemski MJ (2006) Synthesis and characterizations of biodegradable and crosslinkable poly(ε-caprolactone fumarate), poly(ethylene glycol fumarate), and their amphiphilic copolymer. Biomaterials 27:832–841. doi:10.​1016/​j.​biomaterials.​2005.​07.​013 CrossRef
    22.Huang WM, Zhao Y, Wang CC et al (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 19:1–34. doi:10.​1007/​s10965-012-9952-z CrossRef
    23.Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410. doi:10.​1002/​adma.​200904447 CrossRef
    24.Natansohn A, Rochon P (2002) Photoinduced motions in azo-containing polymers. Chem Rev 102:4139–4175CrossRef
    25.Chen W, Wei X, Balazs AC, Matyjaszewski K, Russell TP (2011) Phase behavior and photoresponse of azobenzene-containing polystyrene-block-poly(n-butyl methacrylate) block copolymers. Macromolecules 44:1125–1131. doi:10.​1021/​ma101982u CrossRef
    26.Wu Y, Natansohn A, Rochon P (2004) Photoinduced birefringence and surface relief gratings in polyurethane elastomers with azobenzene chromophore in the hard segment. Macromolecules 37:6090–6095. doi:10.​1021/​ma0493980 CrossRef
    27.Yang Y, Wang X, Liu L et al (2007) Structure and photoresponsive behaviors of multiwalled carbon nanotubes grafted by polyurethanes containing azobenzene side chains. J Phys Chem C 111:11231–11239. doi:10.​1021/​jp0728510 CrossRef
    28.Shevchenko VV, Sidorenko AV, Bliznyuk VN et al (2013) Synthesis and properties of hydroxylated core-fluorinated diamines and polyurethanes based on them with azobenzene nonlinear optical chromophores in the backbone. Polymer 54:6516–6525. doi:10.​1016/​j.​polymer.​2013.​09.​053 CrossRef
    29.Zhang Y, Wang C, Pei X, Wang Q, Wang T (2010) Shape memory polyurethanes containing azo exhibiting photoisomerization function. J Mater Chem 20:9976–9981. doi:10.​1039/​C0JM01944E CrossRef
    30.Liu L, Wu X, Li T (2014) Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length. J Power Sources 249:397–404. doi:10.​1016/​j.​jpowsour.​2013.​10.​116 CrossRef
    31.Xue L, Dai S, Li Z (2009) Synthesis and characterization of three-arm poly(ε-caprolactone)-based poly(ester−urethanes) with shape-memory effect at body temperature. Macromolecules 42:964–972. doi:10.​1021/​ma802437f CrossRef
    32.Nagata M, Yamamoto Y (2009) Synthesis and characterization of photocrosslinked poly(ε-caprolactone)s showing shape-memory properties. J Polym Sci Part A: Polym Chem 47:2422–2433. doi:10.​1002/​pola.​23333 CrossRef
    33.Lee KM, Knight PT, Chung T, Mather PT (2008) Polycaprolactone—POSS chemical/physical double networks. Macromolecules 41:4730–4738. doi:10.​1021/​ma800586b CrossRef
    34.Chen S, Hu J, Zhuo H, Chen S (2011) Effect of MDI–BDO hard segment on pyridine-containing shape memory polyurethanes. J Mater Sci 46:5294–5304. doi:10.​1007/​s10853-011-5469-9 CrossRef
    35.Zhang L, Jiang Y, Xiong Z et al (2013) Highly recoverable rosin-based shape memory polyurethanes. J Mater Chem A 1:3263–3267. doi:10.​1039/​C3TA01655B CrossRef
    36.Niu X, Yang X, Brochu P et al (2012) Bistable large-strain actuation of interpenetrating polymer networks. Adv Mater 24:6513–6519. doi:10.​1002/​adma.​201202876 CrossRef
    37.Wang L, Yang X, Chen H et al (2013) Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl Mater Interfaces 5:10520–10528. doi:10.​1021/​am402091m CrossRef
    38.Bellin I, Kelch S, Langer R, Lendlein A (2006) Polymeric triple-shape materials. Proc Natl Acad Sci USA 103:18043–18047. doi:10.​1073/​pnas.​0608586103 CrossRef
    39.Petrović ZS, Hong D, Javni I, Erina N, Zhang F, Ilavský J (2013) Phase structure in segmented polyurethanes having fatty acid-based soft segments. Polymer 54:372–380. doi:10.​1016/​j.​polymer.​2012.​10.​019 CrossRef
    40.Yang JH, Chun BC, Chung Y-C, Cho JH (2003) Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer 44:3251–3258. doi:10.​1016/​S0032-3861(03)00260-X CrossRef
    41.Ortíz-Palacios J, Rodríguez-Alba E, Zaragoza-Galán G, León-Carmona JR, Martínez A, Rivera E (2015) Incorporation of novel azobenzene dyes bearing oligo(ethylene glycol) spacers into first generation dendrimers. Dyes Pigm 116:1–12. doi:10.​1016/​j.​dyepig.​2014.​11.​023 CrossRef
    42.Zhao R, Zhan X, Yao J et al (2013) Reversible photo-controlled mass transfer in a photo-responsive conjugated main-chain polymer film for high contrast surface patterning. Polym Chem 4:5382–5386. doi:10.​1039/​C3PY00770G CrossRef
    43.McLean RS, Sauer BB (1997) Tapping-mode AFM studies using phase detection for resolution of nanophases in segmented polyurethanes and other block copolymers. Macromolecules 30:8314–8317. doi:10.​1021/​ma970350e CrossRef
    44.Waletzko RS, Korley LTJ, Pate BD, Thomas EL, Hammond PT (2009) Role of increased crystallinity in deformation-induced structure of segmented thermoplastic polyurethane elastomers with PEO and PEO−PPO−PEO soft segments and HDI hard segments. Macromolecules 42:2041–2053. doi:10.​1021/​ma8022052 CrossRef
    45.Jiang HY, Kelch S, Lendlein A (2006) Polymers move in response to light. Adv Mater 18:1471–1475. doi:10.​1002/​adma.​200502266 CrossRef
    46.Matsumoto H, Ishiguro T, Konosu Y et al (2012) Shape-memory properties of electrospun non-woven fabrics prepared from degradable polyesterurethanes containing poly(ω-pentadecalactone) hard segments. Eur Polym J 48:1866–1874. doi:10.​1016/​j.​eurpolymj.​2012.​07.​008 CrossRef
    47.Hu J, Yang Z, Yeung L, Ji F, Liu Y (2005) Crosslinked polyurethanes with shape memory properties. Polym Int 54:854–859. doi:10.​1002/​pi.​1785 CrossRef
  • 作者单位:Xiwen Wu (1)
    Libin Liu (1)
    Wenyuan Fang (1)
    Congde Qiao (1)
    Tianduo Li (1)

    1. Shandong Provincial Key Laboratory of Fine Chemicals, Key Laboratory of Fine Chemicals in Universities of Shandong, Qilu University of Technology, Jinan, 250353, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700