用户名: 密码: 验证码:
Deposition of bio-mimicking graphene sheets with lotus leaf-like and cell-like structures on the nickel substrate
详细信息    查看全文
  • 作者:Juan Yang (1)
    XingBin Yan (1)
    Ying Wang (1)
    BaoMin Luo (1)
    LiPing Wang (1)
    QunJi Xue (1)
  • 关键词:bio ; mimicking ; graphene film ; lotus leaf ; like structure ; cell ; like structure
  • 刊名:Chinese Science Bulletin
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:57
  • 期:23
  • 页码:3036-3039
  • 全文大小:941KB
  • 参考文献:1. Pang S P, Tsao H N, Feng X L, et al. Patterned graphene electrodes from solution processed graphite oxide films for organic field-effect transistors. Adv Mater, 2009, 21: 3488鈥?491 CrossRef
    2. Su Q, Pang S P, Alijani V, et al. Composites of graphene with large aromatic molecules. Adv Mater, 2009, 21: 3191鈥?195 CrossRef
    3. Wang X, Zhi L J, Tsao N, et al. Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed, 2008, 47: 2990鈥?992 CrossRef
    4. Liang Y Y, Wu D Q, Feng X L, et al. Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv Mater, 2009, 21: 1679鈥?683 CrossRef
    5. Stoller M D, Park S, Zhu Y W, et al. Graphene-based ultracapacitors. Nano Lett, 2008, 8: 3498鈥?502 CrossRef
    6. Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper. Nature, 2007, 448: 457鈥?60 CrossRef
    7. Li D, M眉ller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 2008, 3: 101鈥?05 CrossRef
    8. Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457: 706鈥?10 CrossRef
    9. Feng L, Zhang Y N, Xi J M, et al. Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 2008, 24: 4114鈥?119 CrossRef
    10. Nosonovsky M. Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir, 2007, 23: 3157鈥?161 CrossRef
    11. Autumn K, Liang Y A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair. Nature, 2000, 405: 681鈥?85 CrossRef
    12. Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202: 1鈥? CrossRef
    13. Gu Z Z, Uetsuka H, Takahashi K, et al. Structural color and the lotus effect. Angew Chem Int Ed, 2003, 42: 894鈥?97 CrossRef
    14. Ball P. Engineering shark skin and other solutions. Nature, 1999, 400: 507鈥?09 CrossRef
    15. Feng X J, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv Mater, 2006, 18: 3063鈥?078 CrossRef
    16. Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces: From natural to artificial. Adv Mater, 2002, 14: 1857鈥?860 CrossRef
    17. Cao L L, Hu H H, Gao D. Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir, 2007, 23: 4310鈥?314 CrossRef
    18. Lee W, Jin M K, Yoo W C, et al. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir, 2004, 20: 7665鈥?669 CrossRef
    19. Wang Y, Mo Y F, Zhu M, et al. Wettability of metal coatings with biomimic micro textures. Surf Coat Technol, 2008, 203: 137鈥?41 CrossRef
    20. Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc, 2008, 130: 5856鈥?857 CrossRef
    21. Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol, 2009, 4: 30鈥?3 CrossRef
    22. Yan X B, Chen J T, Yang J, et al. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl Mater Interfaces, 2010, 2: 2521鈥?529 CrossRef
    23. Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45: 1558鈥?565 CrossRef
    24. Ramesha G K, Sampath S. Electrochemical reduction of oriented graphene oxide films: An / in situ Raman spectroelectrochemical study. J Phy Chem C, 2009, 19: 7985鈥?989 CrossRef
  • 作者单位:Juan Yang (1)
    XingBin Yan (1)
    Ying Wang (1)
    BaoMin Luo (1)
    LiPing Wang (1)
    QunJi Xue (1)

    1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
  • ISSN:1861-9541
文摘
Bio-mimicking graphene films, deposited on textured nickel substrates, were synthesized by the following method: replicating the surface textures of the lotus leaf by polymer duplication, fabricating textured nickel substrates by electroplating on the polymer coated with a Au film, preparing bio-mimicking graphene oxide films on the nickel substrates by vacuum filtration, and electrochemical reduction. By controlling the vacuum filtration, this replica method can not only replicate the lotus leaf structure by a graphene film, but also can achieve a novel cell-like graphene film.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700