用户名: 密码: 验证码:
Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane
详细信息    查看全文
  • 作者:HaiBin Ma (1) (3)
    WenXin Su (2)
    ZhiXin Tai (1)
    DongFei Sun (1)
    XingBin Yan (1)
    Bin Liu (2)
    QunJi Xue (1)
  • 关键词:polylactic acid ; hydroxyapatite ; graphene oxide ; fibrous membranes
  • 刊名:Chinese Science Bulletin
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:57
  • 期:23
  • 页码:3051-3058
  • 全文大小:1430KB
  • 参考文献:1. Langer R, Vacanti J. Tissue engineering. Science, 1993, 260: 920鈥?26 CrossRef
    2. Crane G M, Ishaug S L, Mikos A G. Bone tissue engineering. Nat Med, 1995, 1: 1322鈥?324 CrossRef
    3. Yaszemski M J, Payne R G, Hayes W C, et al. Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone. Biomaterials, 1996, 17: 175鈥?85 CrossRef
    4. Vacanti C A, Vacanti J P. Bone and cartilage reconstruction with tissue engineering approaches. Otolaryngol Clin North Am, 1994, 27: 263鈥?76
    5. Devin J E, Attawia M A, Laurencin C T. Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair. J Biomater Sci Polymer Edn, 1996, 7: 661鈥?69 CrossRef
    6. Marra K G, Szem J W, Kumta P N, et al. / In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res, 1999, 47: 24鈥?5 CrossRef
    7. Maquet V, Boccaccini A R, Pravata L, et al. Porous poly (a-hydroxyacid)/bioglass composite scaffolds for bone tissue engineering. I: Preparation and / in vitro Characterisation. Biomaterials, 2004, 25: 4185鈥?194 CrossRef
    8. Yang F, Murugan R, Ramakrishna S, et al. Fabrication of nanostructured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials, 2004, 25: 1891鈥?900 CrossRef
    9. Russias J, Saiz E, Nalla R K, et al. Fabrication and mechanical properties of PLA/ HA composites: A study of in vitro degradation. Mater Sci Engineer C, 2006, 26: 1289鈥?295 CrossRef
    10. Lannuttia J, Reneker D, Ma T, et al. Electrospinning for tissue engineering scaffolds. Mater Sci Engineer C, 2007, 27: 504鈥?09 CrossRef
    11. Liu C, Xia Z, Czernuszka J T. Design and development of three-dimensional scaffolds for tissue engineering. Trans I ChemE Part A, 2007, 85: 1051鈥?064 CrossRef
    12. Subbiah T, Bhat G S, Tock R W, et al. Electrospinning of nanofibers. J Appl Polym Sci, 2005, 96: 557鈥?69 CrossRef
    13. Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996, 7: 216鈥?23 CrossRef
    14. Yang Y, Jia Z, Li Q, et al. Electrospinning and its application. High Voltage Engine, 2006, 32: 91鈥?5
    15. Qin X H, Wang S Y. Electrospun nanofibers from crosslinked poly (vinyl alcohol) and its filtration efficiency. J Appl Polym Sci, 2008, 109: 951鈥?56 CrossRef
    16. Mo X M, Xu C Y, Kotaki M, et al. Electrospun P (LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials, 2004, 25: 1883鈥?890 CrossRef
    17. Xu C Y, Inai R, Kotaki M, et al. Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials, 2004, 25: 877鈥?86 CrossRef
    18. Hutmacher D W. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21: 2529鈥?543 CrossRef
    19. Li W J, Laurencin C T, Caterson E J, et al. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res, 2002, 60: 613鈥?21 CrossRef
    20. Kim H W, Lee H H, Knowles J C. Electrospinning biomedical nanocomposite fibers of hydroxyapaite/poly (lactic acid) for bone regeneration. J Biomed Mater Res Part A, 2006, 79A: 643鈥?49 CrossRef
    21. Montjovent M O, Mathieu L, Hinz B, et al. Biocompatibility of bioresorbable poly (L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Tissue Eng, 2005, 11: 1640鈥?649 CrossRef
    22. Schmack G, Tandler B, Vogel R, et al. Biodegradable fibers of poly (L-lactide) produced by high-speed melt spinning and spin drawing. J Appl Polym Sci, 1999, 73: 2785鈥?000 CrossRef
    23. Fujuan L, Rui G, Mingwu S, et al. Effect of the porous microstructures of poly(lactic-co-glycolic acid)/carbon nanotube composites on the growth of fibroblast cells. Soft Mater, 2010, 8: 239鈥?53 CrossRef
    24. Furuzono T, Kishida A, Tanaka J. Nano-scaled hydroxyapatite/polymer composite I coating of sintered hydroxyapatite particles on poly(螕-methacryloxypropyl trimethoxysilane)-grafted silk fibroin fibers through chemical bonding. J Mate Sci Mater Med, 2004, 15: 19鈥?3 CrossRef
    25. Wang S, Tambraparni M, Qiu J J, et al. Thermal expansion of graphene composites. Macromolecules, 2009, 45: 5251鈥?255 CrossRef
    26. Jiang J W, Wang J S, Li B. Young鈥檚 modulus of graphene: A molecular dynamics study. Phys Rev B, 2009, 80: 113405鈥?13408 CrossRef
    27. Shi Y M, Fang W J, Zhang K K, et al. Photoelectrical response in single-layer graphene transistors. Small, 2009, 5: 2005鈥?011 CrossRef
    28. Cai D Y, Song M. A simple route to enhance the interface between graphite oxide nanoplatelets and a semi-crystalline polymer for stress transfer. Nanotechnology, 2009, 20: 315708 CrossRef
    29. Xu Z, Gao C. / In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules, 2010, 43: 6716鈥?723 CrossRef
    30. Xu Y, Hong W J, Bai H, et al. Strong and ductile poly (vinyl alcohol)/ graphene oxide composite films with a layered structure. Carbon, 2009, 47: 3538鈥?543 CrossRef
    31. Veca L M, Lu F S, Meziani M J, et al. Polymer functionalization and solubilization of carbon nanosheets. Chem Commun, 2009, 14: 2565鈥?567 CrossRef
    32. Salavagione H J, Gomez M A, Martinez G. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules, 2009, 42: 6331鈥?334 CrossRef
    33. Yan X B, Chen J T, Yang J, et al. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl Mater Interfaces, 2010, 2: 2521鈥?529 CrossRef
    34. Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun, 2011, 2: 571 CrossRef
    35. Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc, 2008, 130: 5856鈥?857 CrossRef
    36. Xu J Y, Hu Y, Song L, et al. Preparation and characterization of poly (vinyl alcohol)/graphite oxide nanocomposite. Carbon, 2002, 40: 445鈥?67 CrossRef
    37. Chen Y F, Qi Y Y, Tai Z X, et al. Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. J Eur Polym, 2012, 48: 1026鈥?033 CrossRef
    38. Xiao Y Z, Ji L Y, Cheng P, et al. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon, 2011, 49: 986鈥?95 CrossRef
    39. Kan W, Jing R, Hua S, et al. / In vitro toxicity evaluation of graphene oxide on A549 cells. Tox Lett, 2011, 200: 201鈥?10 CrossRef
    40. Wang K, Ruan J, Song H, et al. Biocompatibility of graphene oxide. Nanoscale Res Lett, 2011, 6: 1鈥?
    41. William S, Hummers J, Richard E O. Preparation of graphitic oxide. J Am Chem Soc, 1958, 80: 1339 CrossRef
    42. Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 2006, 44: 3342鈥?347 CrossRef
    43. Kim B, Mooney D J. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trend Biotech, 1998, 16: 224鈥?30 CrossRef
    44. He W, Yong T, Teo W E, et al. Fabrication and enthothelialization of collagen-blended biodegradable polymer nanofibers: Potential vascular graft for the blood vessel tissue engineering. Tissue Eng, 2005, 11: 1574鈥?588 CrossRef
    45. Webster T J, Ergun C, Doremus R H, et al. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 2000, 21: 1803鈥?810 CrossRef
    46. Hutmacher D W. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21: 2529鈥?543 CrossRef
    47. Cui Y, Liu Y, Jing X B, et al. The nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair. Acta Biomaterialia, 2009, 5: 2680鈥?692 CrossRef
  • 作者单位:HaiBin Ma (1) (3)
    WenXin Su (2)
    ZhiXin Tai (1)
    DongFei Sun (1)
    XingBin Yan (1)
    Bin Liu (2)
    QunJi Xue (1)

    1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
    3. Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
    2. School of Stomatology, Lanzhou University, Lanzhou, 730000, China
  • ISSN:1861-9541
文摘
A series of polylactic acid (PLA) based nanocomposite fibrous membranes, including neat PLA, PLA/hydroxyapatite (HA) and PLA/HA/graphene oxide (GO), were fabricated via electrospinning method. The morphology and composition were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) respectively. The thermal stability was determined by thermogravimetric analysis (TGA). To estimate the cytocompatibility of asprepared PLA/HA/GO fibrous membrane, MC3T3-E1 cells were cultured, and the corresponding cell adhesion and differentiation capability were investigated by fluorescence microscopy, SEM and MTT test. The electrospun ternary PLA/HA/GO membrane exhibited three-dimensional fibrous structure with relatively rough surface morphology, which made itself ideal for cell attachment and proliferation in bone tissue regeneration. The fluorescence microscopy, SEM and MTT test confirmed that the PLA/HA/GO nanocomposite fibrous membrane created a proper environment for the seeding and proliferation of MC3T3-E1 cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700